7/16 + 3/8 + Blank = 1
7/16 + 6/16 + 3/16 = 1
convert 3/8 to 6/16 then add 7+6 which = 13
that would be 13/16 then figure out that 13+3 =16 so 13/16+3/16= 16/16 or 1
(tan(<em>x</em>) + cot(<em>x</em>)) / (tan(<em>x</em>) - cot(<em>x</em>)) = (tan²(<em>x</em>) + 1) / (tan²(<em>x</em>) - 1)
… = (sin²(<em>x</em>) + cos²(<em>x</em>)) / (sin²(<em>x</em>) - cos²(<em>x</em>))
… = -1/cos(2<em>x</em>)
Then as <em>x</em> approaches <em>π</em>/2, the limit is -1/cos(2•<em>π</em>/2) = -sec(<em>π</em>) = 1.
Answer:
2+1 is 3
Step-by-step explanation:
just add one more
Answer:
D. Subtraction Property of Equality
Step-by-step explanation:
Hope it helps.
\left[x \right] = \left[ \frac{3}{8}\right][x]=[83] totally answer