Draw a diagram to illustrate the problem as shown in the figure below.
Let h the height of the hill. =
At position A, the angle of elevation is 40°, and the horizontal distance to the foot of the hill is x.
By definition,
tan(40°) = h/x h = x tan40 = 0.8391x
(1)
At position B, Joe is (x - 450) ft from the foot of the hill. His angle of elevation is
40 + 18 = 58°.
By definition, tan(58°) = h/(x - 450)
h = (x - 450) tan(58°) = 1.6003(x-450)
h = 1.6003x - 720.135 (2)
Equate (1) and (2).
1.6003x - 720.135 = 0.8391x 0.7612x = 720.135
x = 946.0523
From (1), obtain
h = 0.8391*946.0523 = 793.8 ft
Answer: The height of the hill is approximately 794 ft (nearest integer)
Answer:
Idk what u mean?
Step-by-step explanation:
but i searched it up and here are my results
The solution of an equation is the set of all values that, when substituted for unknowns, make an equation true. For equations having one unknown, raised to a single power, two fundamental rules of algebra, including the additive property and the multiplicative property, are used to determine its solutions.Mar 20, 2020
email me if it helps
ty
(a) From the histogram, you can see that there are 2 students with scores between 50 and 60; 3 between 60 and 70; 7 between 70 and 80; 9 between 80 and 90; and 1 between 90 and 100. So there are a total of 2 + 3 + 7 + 9 + 1 = 22 students.
(b) This is entirely up to whoever constructed the histogram to begin with... It's ambiguous as to which of the groups contains students with a score of exactly 60 - are they placed in the 50-60 group, or in the 60-70 group?
On the other hand, if a student gets a score of 100, then they would certainly be put in the 90-100 group. So for the sake of consistency, you should probably assume that the groups are assigned as follows:
50 ≤ score ≤ 60 ==> 50-60
60 < score ≤ 70 ==> 60-70
70 < score ≤ 80 ==> 70-80
80 < score ≤ 90 ==> 80-90
90 < score ≤ 100 ==> 90-100
Then a student who scored a 60 should be added to the 50-60 category.
Answer:
what's the question???/
Step-by-step explanation: