For an exponential function in the form of y=ab to the power of x , if b is between 0 and 1, what happens to the graph of the fu
nction as x increases? A. The graph gets closer to the x-axis. B. The graph gets closer to the y-axis. C. The graph curves up away from the x-axis. D. The graph curves down away from the x-axis.
The answer is A, because if b is equal to one then no matter what x is the answer on the y-axis would be one, since one to any power is one. If b is less than one, for example 0.5, then the result will get smaller as x increases. It would go 0.5^(1), then 0.5^(2)=0.25, and continue to get smaller, therefore getting closer to the x-axis.