1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marina CMI [18]
3 years ago
15

Tell whether each equation has one ,zero,or infinitely many solutions

Mathematics
1 answer:
zubka84 [21]3 years ago
6 0
The answer to the question

You might be interested in
Find the vectors T, N, and B at the given point. r(t) = < t^2, 2/3t^3, t >, (1, 2/3 ,1)
maxonik [38]

Answer with Step-by-step explanation:

We are given that

r(t)=< t^2,\frac{2}{3}t^3,t >

We have to find T,N and B at the given point t > (1,2/3,1)

r'(t)=

\mid r'(t) \mid=\sqrt{(2t)^2+(2t^2)^2+1}=\sqrt{(2t^2+1)^2}=2t^2+1

T(t)=\frac{r'(t)}{\mid r'(t)\mid}=\frac{}{2t^2+1}

Now, substitute t=1

T(1)=\frac{}{2+1}=\frac{1}{3}

T'(t)=\frac{-4t}{(2t^2+1)^2} +\frac{1}{2t^2+1}

T'(1)=-\frac{4}{9}+\frac{1}{3}

T'(1)=\frac{1}{9}=

\mid T'(1)\mid=\sqrt{(\frac{-2}{9})^2+(\frac{4}{9})^2+(\frac{-4}{9})^2}=\sqrt{\frac{36}{81}}=\frac{2}{3}

N(1)=\frac{T'(1)}{\mid T'(1)\mid}

N(1)=\frac{}{\frac{2}{3}}=

N(1)=

B(1)=T(1)\times N(1)

B(1)=\begin{vmatrix}i&j&k\\\frac{2}{3}&\frac{2}{3}&\frac{1}{3}\\\frac{-1}{3}&\frac{2}{3}&\frac{-2}{3}\end{vmatrix}

B(1)=i(\frac{-4}{9}-\frac{2}{9})-j(\frac{-4}{9}+\frac{1}{3})+k(\frac{4}{9}+\frac{2}{9})

B(1)=-\frac{2}{3}i+\frac{1}{3}j+\frac{2}{3}k

B(1)=\frac{1}{3}

5 0
3 years ago
Match the parabolas represented by the equations with their vertices. y = x2 + 6x + 8 y = 2x2 + 16x + 28 y = -x2 + 5x + 14 y = -
GaryK [48]

Consider all parabolas:

1.

y = x^2 + 6x + 8,\\y=x^2+6x+9-9+8,\\y=(x^2+6x+9)-1,\\y=(x+3)^2-1.

When x=-3, y=-1, then the point (-3,-1) is vertex of this first parabola.

2.

y = 2x^2 + 16x + 28=2(x^2+8x+14),\\y=2(x^2+8x+16-16+14),\\y=2((x^2+8x+16)-16+14),\\y=2((x+4)^2-2)=2(x+4)^2-4.

When x=-4, y=-4, then the point (-4,-4) is vertex of this second parabola.

3.

y =-x^2 + 5x + 14=-(x^2-5x-14),\\y=-(x^2-5x+\dfrac{25}{4}-\dfrac{25}{4}-14),\\y=-((x^2-5x+\dfrac{25}{4})-\dfrac{25}{4}-14),\\y=-((x-\dfrac{5}{2})^2-\dfrac{81}{4})=-(x-\dfrac{5}{2})^2+\dfrac{81}{4}.

When x=2.5, y=20.25, then the point (2.5,20.25) is vertex of this third parabola.

4.

y =-x^2 + 7x + 7=-(x^2-7x-7),\\y=-(x^2-7x+\dfrac{49}{4}-\dfrac{49}{4}-7),\\y=-((x^2-7x+\dfrac{49}{4})-\dfrac{49}{4}-7),\\y=-((x-\dfrac{7}{2})^2-\dfrac{77}{4})=-(x-\dfrac{7}{2})^2+\dfrac{77}{4}.

When x=3.5, y=19.25, then the point (3.5,19.25) is vertex of this fourth parabola.

5.

y =2x^2 + 7x +5=2(x^2+\dfrac{7}{2}x+\dfrac{5}{2}),\\y=2(x^2+\dfrac{7}{2}x+\dfrac{49}{16}-\dfrac{49}{16}+\dfrac{5}{2}),\\y=2((x^2+\dfrac{7}{2}x+\dfrac{49}{16})-\dfrac{49}{16}+\dfrac{5}{2}),\\y=2((x+\dfrac{7}{4})^2-\dfrac{9}{16})=2(x+\dfrac{7}{4})^2-\dfrac{9}{8}.

When x=-1.75, y=-1.125, then the point (-1.75,-1.125) is vertex of this fifth parabola.

6.

y =-2x^2 + 8x +5=-2(x^2-4x-\dfrac{5}{2}),\\y=-2(x^2-4x+4-4-\dfrac{5}{2}),\\y=-2((x^2-4x+4)-4-\dfrac{5}{2}),\\y=-2((x-2)^2-\dfrac{13}{2})=-2(x-2)^2+13.

When x=2, y=13, then the point (2,13) is vertex of this sixth parabola.

3 0
3 years ago
PLEASE HELP PLEASEEEE!!! Number 3
deff fn [24]
The equation for this is a^2+b^2=c^2 so your equation would be 7^2+20^2=X
So you square the 7 and the 20 then take the square root of X and you get
X=21.19
:)
6 0
3 years ago
1. What is the slope of the line that passes through the given points? <br> (2, 12) and (6, 11)
Y_Kistochka [10]

Answer:

-1/4x

Step-by-step explanation:

11-12/6-2 = -1/4

8 0
3 years ago
Z^4-4z^3+4z^2+48=0 how to find value of z?​
Aliun [14]

There are no real solutions to solve Z. If there may be a typo or something, there are no solutions.

3 0
1 year ago
Other questions:
  • Solve for y=7x-3w for x
    14·1 answer
  • Which of the following terms correctly describe the figure given below?
    5·2 answers
  • The LCD of theses fractions? <br> y/x + y/3+ y+1/y<br><br> Answers:<br> 3x+y<br> x+3+y<br> 3x+y
    8·1 answer
  • On a piece of paper, use a protractor and a ruler to construct △ABC with AB=6 cm , m∠A=80° , and m∠B=50° .
    10·2 answers
  • Denita has 4 coins. If Denita flips all the coins at once, how many outcomes are in the sample space?
    10·1 answer
  • I NEED HELP ASAP IT'S DUE IN 40 MINUTES!!! I'LL GIVE BRAINLIEST!!!
    10·2 answers
  • Does anyone know what 8283 / 19 is? thank you!
    7·1 answer
  • Given (9,4) and (x,−11), find all x such that the distance between these two points is 17. Separate multiple answers with a comm
    9·1 answer
  • Explain how to write 2 dividid 5 as a fraction
    8·2 answers
  • By which rule are these triangles congruent?<br><br> АА<br> SAS<br> SSA<br> AAS
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!