Answer:
Fourth degree polynomial (aka: quartic)
====================================================
Work Shown:
There isnt much work to show here because we can use the fundamental theorem of algebra. The fundamental theorem of algebra states that the number of roots is directly equal to the degree. So if we have 4 roots, then the degree is 4. This is assuming that there are no complex or imaginary roots.
-------------------
If you want to show more work, then you would effectively expand out the polynomial
(x-m)(x-n)(x-p)(x-q)
where
m = 4, n = 2, p = sqrt(2), q = -sqrt(2)
are the four roots in question
(x-m)(x-n)(x-p)(x-q)
(x-4)(x-2)(x-sqrt(2))(x-(-sqrt(2)))
(x-4)(x-2)(x-sqrt(2))(x+sqrt(2))
(x^2-6x+8)(x^2 - 2)
(x^2-2)(x^2-6x+8)
x^2(x^2-6x+8) - 2(x^2-6x+8)
x^4-6x^3+8x^2 - 2x^2 + 12x - 16
x^4 - 6x^3 + 6x^2 + 12x - 16
We end up with a 4th degree polynomial since the largest exponent is 4.
500,000 people assuming if they all vote? Can you please provide more information about the question if you want deeper intell?
Answer:
a³+2a³+5
Step-by-step explanation:
7a³+14a+12+{-6a³}+12a²-7
=<u>7a³-6a³</u>+<u>14a+12a²</u>+<u>12-7</u>
=a³+2a³+5
Answer:
$2160
Step-by-step explanation:
=PRN
6000×0.12×3