Answer:
Step-by-step explanation:
The Order of Operations is very important when simplifying expressions and equations. The Order of Operations is a standard that defines the order in which you should simplify different operations such as addition, subtraction, multiplication and division.
This standard is critical to simplifying and solving different algebra problems. Without it, two different people may interpret an equation or expression in different ways and come up with different answers. The Order of Operations is shown below.
Parentheses and Brackets -- Simplify the inside of parentheses and brackets before you deal with the exponent (if any) of the set of parentheses or remove the parentheses.
Exponents -- Simplify the exponent of a number or of a set of parentheses before you multiply, divide, add, or subtract it.
Multiplication and Division -- Simplify multiplication and division in the order that they appear from left to right.
Addition and Subtraction -- Simplify addition and subtraction in the order that they appear from left to right.
Before we begin simplifying problems using the Order of Operations, let's examine how failure to use the Order of Operations can result in a wrong answer to a problem.
Without the Order of Operations one might decide to simplify the problem working left to right. He or she would add two and five to get seven, then multiply seven by x to get a final answer of 7x. Another person might decide to make the problem a little easier by multiplying first. He or she would have first multiplied 5 by x to get 5x and then found that you can't add 2 and 5x so his or her final answer would be 2 + 5x. Without a standard like the Order of Operations, a problem can be interpreted many different ways
Show a picture of it I can’t see one
The answer is 2.99 explanation is that I used my calculator lol
Answer:
The minimum score required for an A grade is 88.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Find the minimum score required for an A grade.
Top 12%, which is at least the 100-12 = 88th percentile, which is the value of X when Z has a pvalue of 0.88. So it is X when Z = 1.175.




Rounding to the nearest whole number
The minimum score required for an A grade is 88.