Answer:
• c = √89 ≈ 9.434
• A = arcsin(8/√89) ≈ 57.995°
• B = arcsin(5/√89) ≈ 32.005°
Step-by-step explanation:
By the law of cosines, ...
c² = a² + b² -2ab·cos(C)
Since c=90°, cos(C) = 0 and this reduces to the Pythagorean theorem for this right triangle.
c = √(8² +5²) = √89 ≈ 9.434
Then by the law of sines (or the definition of the sine of an angle), ...
sin(A) = a/c·sin(C) = a/c = 8/√89
A = arcsin(8/√89) ≈ 57.995°
sin(B) = b/c·sin(C) = b/c = 5/√89
B = arcsin(5/√89) ≈ 32.005°
-19m-19 = 4m-4m+19
-19m-19 = 0+19
-19m = 19+19
-19m = 38
m = 38÷(-19)
m = -2
Answer:
Answer is in the attachment.
Step-by-step explanation:
To graph x>2 consider first x=2. x=2 is a vertical line and if you want to graph x>2 you need to shade to the right of the vertical line.
To graph x+y<2, I will solve for y first.
x+y<2
Subtract x on both sides:
y<-x+2
Consider the equation y=-x+2. This is an equation with y-intercept 2 and slope -1 or -1/1. So the line you have in that picture looks good for y=-x+2. Now going back to consider y<-x+2 means we want to shade below the line because we had y<.
Now where you see both shadings will be intersection of the shadings and will actually by your answer to system of inequalities you have. In my picture it is where you have both blue and pink.
I have a graph in the picture that shows the solution.
Also both of your lines will be solid because your question in the picture shows they both have equal signs along with those inequality signs.
Just in case my one graph was confusing, I put a second attachment with just the solution to the system.
Answer:
B
Step-by-step explanation:
From the statement, we are given a function that shows the number of cell tower users f(x) after x years, from the year 2010 to 2019, so, to solve the problem, we need to remember that the domain is equal to all the values that the variable (x for this case) could take making the function itself exist.
So, the given function is a function of years, and we know that "x" represents the years from 2010 (starting value), to 2019 (ending value) meaning that the domain is located between those two values.
Hence, the correct option is:
B. 0 ≤ x ≤ 5,000