1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga2289 [7]
2 years ago
8

What is the common ratio for this geometric sequence 3,12,48,192,... A 16 B. 3 C. 4 D. 9

Mathematics
1 answer:
hram777 [196]2 years ago
3 0

Answer:

4

Step-by-step explanation:

The common ratio is  found by taking the second term and dividing by the first term

12/3 = 4

We can check by taking the third term and dividing by the second

48/12 = 4

The common ratio is 4

You might be interested in
Determine the length of the leg of 45°- 45°- 90° triangle with a hypotenuse length of 38.
Mashutka [201]

Answer:Hello! Hopefully your question is.......

19√2

Step-by-step explanation:

Hope This Helps! I'm sorry if i'm wrong. Reach Out to me if you got any questions! Bye!

3 0
3 years ago
Answer please :) ?????
-Dominant- [34]

Answer:

9t

Step-by-step explanation:

9*t

4 0
3 years ago
Read 2 more answers
What is the exact volume of a circle with a radius of 1?
VARVARA [1.3K]

Answer:

Step-by-step explanation:

What is  1 and 1/4 times 2/3 in Simplest form

5 0
3 years ago
Read 2 more answers
Given <br><img src="https://tex.z-dn.net/?f=%20log_%7B2%7D%28x%29%20%20%3D%20%20%5Cfrac%7B3%7D%7B%20log_%7Bxy%7D%282%29%20%7D%20
Naily [24]

Answer:

\displaystyle y = x^{-\frac{2}{3}}

Step-by-step explanation:

<u>Logarithms</u>

Some properties of logarithms will be useful to solve this problem:

1. \log(pq)=\log p+\log q

2. \displaystyle \log_pq=\frac{1}{\log_qp}

3. \displaystyle \log p^q=q\log p

We are given the equation:

\displaystyle \log_{2}(x) = \frac{3}{ \log_{xy}(2) }

Applying the second property:

\displaystyle  \log_{xy}(2)=\frac{1}{ \log_{2}(xy)}

Substituting:

\displaystyle \log_{2}(x) = 3\log_{2}(xy)

Applying the first property:

\displaystyle \log_{2}(x) = 3(\log_{2}(x)+\log_{2}(y))

Operating:

\displaystyle \log_{2}(x) = 3\log_{2}(x)+3\log_{2}(y)

Rearranging:

\displaystyle \log_{2}(x) - 3\log_{2}(x)=3\log_{2}(y)

Simplifying:

\displaystyle -2\log_{2}(x) =3\log_{2}(y)

Dividing by 3:

\displaystyle \log_{2}(y)=\frac{-2\log_{2}(x)}{3}

Applying the third property:

\displaystyle \log_{2}(y)=\log_{2}\left(x^{-\frac{2}{3}}\right)

Applying inverse logs:

\boxed{y = x^{-\frac{2}{3}}}

7 0
3 years ago
A is 5 years older than T. In 3 years, T will be 2/3 A age. How old is A?
Ivanshal [37]

Answer:

12 years

Step-by-step explanation:

T + 5 = A

Therefore T =A - 5

In three years T = 3+ (A-5)

thus T = A - 2

Also in three years T = 2/3 (A+3)

Equating the two

A -2 = 2/3 (A+3)

3A - 6 = 2A + 6

3A - 2A = 6 + 6

Therefore A = 12

6 0
3 years ago
Other questions:
  • Solve for x using technology 2 log 3(x-1)=log(4 x 2-25)
    8·1 answer
  • I know this question doesn't make much sense, but it's on my summer packet.
    13·1 answer
  • Use hookes law
    5·1 answer
  • Rudy worked hard all summer. Before school starts he decided to go shopping and spend some of his earnings. He spent one third o
    11·1 answer
  • Point A has coordinates (3,4). After a translation 4 units left, a reflection across the x-axis, and a translation 2 units down,
    6·1 answer
  • Round each number to the place of the underlined digit the 4 is underlined in 324,650
    8·1 answer
  • Which of the following pair(s) of circles are externally tangent? Select all that apply.
    5·2 answers
  • Write a 5 digitnumber that is divisible by 8?
    10·2 answers
  • -8+-8(6n)+-8(1)<br> (Please help I need to get an 100% on the assignment I’m doing)
    11·1 answer
  • 2) There are 112 male and 78 females working at
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!