When a circle's diameter is 1, its circumference is π.
5000 is 1/10 of 50000 because 50000 divided by 10 is 5000
<h3>
Answer: Choice A</h3>
![x^2\left(\sqrt[4]{x^2}\right)](https://tex.z-dn.net/?f=x%5E2%5Cleft%28%5Csqrt%5B4%5D%7Bx%5E2%7D%5Cright%29)
=====================================================
Explanation:
The fourth root of x is the same as x^(1/4)
I.e,
![\sqrt[4]{x} = x^{1/4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%7D%20%3D%20x%5E%7B1%2F4%7D)
The same applies to x^10 as well
![\sqrt[4]{x^{10}} = \left(x^{10}\right)^{1/4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E%7B10%7D%7D%20%3D%20%5Cleft%28x%5E%7B10%7D%5Cright%29%5E%7B1%2F4%7D)
Multiply the exponents 10 and 1/4 to get 10/4
![\sqrt[4]{x^{10}} = \left(x^{10}\right)^{1/4} = x^{10*1/4} = x^{10/4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E%7B10%7D%7D%20%3D%20%5Cleft%28x%5E%7B10%7D%5Cright%29%5E%7B1%2F4%7D%20%3D%20x%5E%7B10%2A1%2F4%7D%20%3D%20x%5E%7B10%2F4%7D)
![\sqrt[4]{x^{10}} = x^{10/4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E%7B10%7D%7D%20%3D%20x%5E%7B10%2F4%7D)
-----------------------
If we have an expression in the form x^(m/n), with m > n, then we can simplify it into an equivalent form as shown below
![x^{m/n} = x^a\sqrt[n]{x^b}](https://tex.z-dn.net/?f=x%5E%7Bm%2Fn%7D%20%3D%20x%5Ea%5Csqrt%5Bn%5D%7Bx%5Eb%7D)
The 'a' and 'b' are found through dividing m/n
m/n = a remainder b
'a' is the quotient, b is the remainder
-----------------------
The general formula can easily be confusing, so let's replace m and n with the proper numbers. In this case, m = 10 and n = 4
m/n = 10/4 = 2 remainder 2
We have a = 2 and b = 2
So
![x^{m/n} = x^a\sqrt[n]{x^b}](https://tex.z-dn.net/?f=x%5E%7Bm%2Fn%7D%20%3D%20x%5Ea%5Csqrt%5Bn%5D%7Bx%5Eb%7D)
turns into
![x^{10/4} = x^2\sqrt[4]{x^2}](https://tex.z-dn.net/?f=x%5E%7B10%2F4%7D%20%3D%20x%5E2%5Csqrt%5B4%5D%7Bx%5E2%7D)
which means
![\sqrt[4]{x^{10}} = {x^2} \sqrt[4]{x^2}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E%7B10%7D%7D%20%3D%20%7Bx%5E2%7D%20%5Csqrt%5B4%5D%7Bx%5E2%7D)
Answer:
11. 3^2 • 3^5 < 3^8
12. 3^3 • 3^3 > 3^5
13. Option C.
Step-by-step explanation:
11. Which of the following expressions is true?
A. 4^3• 4^4 = 412
4^3• 4^4 = 4^7 = 16384 ❌
B. 5^2 • 5^3 > 5^5
5^2 • 5^3 = 5^5 ❌
C. 3^2 • 3^5 < 3^8
3^2 • 35 = 315 ✔️
D. 5^2 • 54 = 58
5^2 • 54 = 1350 ❌
12. Which of the following expressions is true?
A. 8^3 • 8^2 < 8^4
8^3 • 8^2 = 8^5 ❌
B. 4^4 • 4^4 = 4^16
4^4 • 4^4 = 4^8 ❌
C. 2^2 • 2^6 < 2^8
2^2 • 2^6 = 2^8 ❌
D. 3^3 • 3^3 > 3^5
3^3 • 3^3 = 3^6 ✔️
13. Write the value of the expression: 3^4/3^4
3^4/3^4 = 1
The correct answer is C. 1 ✔️
$1.14 1.40 x 0.8=1.12 1.4+ 1.12=1.52 * 0.25 = 1.14