Answer:
Rosaria purchased 50 bracelets and 70 necklaces
Step-by-step explanation:
Let the number of bracelets be b and the number of necklaces be n
b + n = 120 •••••(i)
Secondly;
10b + 11n = 1270 ••••(ii)
Total cost of b bracelets at 10 per 1 is 10b
Total cost of n bracelets at 11 per 1 is 11n
Adding both gives 1270
From i, b = 120-n
Substitute this into ii
10(120-n) + 11n = 1270
1200 - 10n + 11n = 1270
n = 1270-1200
n = 70
b = 120-n
b = 120-70
b = 50
The length and width of the rug is 20 and 11 feet respectively
The given parameters;
dimension of the room = 19 ft by 28 ft
maximum area of rug she can afford = 220 ft²
For a uniform stripe of floor around the rug, then suppose the uniform excess length of the floor to removed from each dimension = y
(28-2x)(19-2x)=220
532-94x+4x^2=220
4x^2-94x+312=0
x=39/2,4
For x=39/2, dimensions are negative.
The uniform dimension of the floor to be covered by the maximum area of rug she can afford = (28 - 4×2) and (19 -2×4 ) = 20 and 11
Thus, the dimensions of the rug should be 20 feet and 11 feet
- The area of a rectangle is length times breadth.
- Area is the total squares cm occupied by a closed figure.
To learn more about area of a rectangle visit:
brainly.com/question/20693059
#SPJ9
The area of the shape shown in the image which is in the shape of kite figure is 168 squared centimeters.
<h3>What is the area of the kite figure?</h3>
The area of the kite figure is half of the product of its diagonals. Area of kite figure can be find out using the following formula.

Here, p and q are the diagonals of the kite.
The length of the first diagonal of the kite figure is,
p=6+15
p=21 cm
The length of the second diagonal of the kite figure is,
q=8+8
q=16 cm
Thus, the area of kite figure is:

Thus, the area of the shape shown in the image which is in the shape of kite figure is 168 squared centimeters.
Learn more about the area of kite here;
brainly.com/question/16424656
#SPJ1
Answer:
1/3
Step-by-step explanation:
<em>Method 1.</em>
slope = rise/run
Rise is vertical distance.
Run is horizontal distance.
Find two points that are easy to read (on grid intersections):
(2, -1) and (5, 0).
Start at (2, 1). You need to go to (5, 0) by moving only vertically and horizontally. Go up 1 unit. That is a rise of 1. Now go right 3 units. That is a run of 3.
rise = 1
run = 3
slope = rise/run = 1/3
<em>Method 2.</em>
Use the slope formula and two points on the line.

Use points (2, -1) and (5, 0).



slope = 1/3