Refer to the figure shown below.
We shall review each of the three given measurements and decide what type of triangle we have.
Measurement a.
a=3, b=4, c=5.
For a right triangle, c² = a² + b² (Pythagorean theorem)
a² + b² = 3² + 4² = 9 + 16 = 25
c² = 5² = 25
Answer:
This is a right triangle, because c² = a² + b².
Measurement b.
a=5, b=6, c=7.
For an acute triangle, c² < a² + b².
a² + b² = 5² + 6² = 25 + 36 = 61
c² = 7² = 49
Answer:
This is an acute triangle, because c² < a² + b².
Measurement c.
a=8, b=9, c=12.
For an obtuse triangle, c² > a² + b².
a² + b² = 8² + 9² = 64 + 81 = 145
c² = 12² = 144
Answer:
This is an acute triangle because c² < a² + b².
(750m) - 1050 = b
1800 - 1050 = 750 dollars lost.
So (750m) - 1050 = b will give you the balance.
Answer:
(x + 2) ^2 (x - 2) ^ 2 so A is the answer.
Step-by-step explanation:
Answer:
25. If you look at angle B from the first figure you see a square that indicates a 90 degrees angle, thus the figure shown is a right triangle. You can also see that angle C is said to have 60 degrees. a right triangle has a total angle of 180 degrees. so, 180 - 90 - 60 = 30 degrees. Therefore, angle A is 30 degrees.
27. Now you want the measure of the hypotenuse, and you know this a right triangle. so, simply use the law of sines to find the measure of AC :
4cm/sin(60) = AC/Sin90
AC = 4.62 cm
29. angle z is in the other figure and same stuff, just substract the angles, you have 90 degrees and 30 degrees... 180 - 90 - 30 = 60 degrees
31. Angle Y = 90 degrees
this value is already given, it's the little square that indicates a 90 degrees angle.
26. 5 cm
28. 90 degrees
30. You already found AC, use the pythagorean theorem. sqrt((4.62)^2 - 4^2) = 2.31 cm
32. use pythagoras again, square root(5^2 - 3^2) = 4
So as you can see all the measurements are the same because if you see at the very top of your figures it says ABC = XYZ which means pretty much that they have the same values (notice that there is a little something added to the = sign, watch out for that because that's what indicates that two figures are equal in terms of angles and measures.