1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luba_88 [7]
3 years ago
15

What is the perimeter of the polygon? 12 cm 4 cm 5 cm 5 cm 6 cm

Mathematics
2 answers:
LekaFEV [45]3 years ago
6 0

Answer:

32 cm

Step-by-step explanation:

Add 12+5+5+4+6 to get the perimeter.

masya89 [10]3 years ago
3 0
5 because I really need points
You might be interested in
Factorise 10xy-12+15x-8y
GaryK [48]

Answer: 10xy-12+15x-8y=(5x-4)*(2y+3).

Step-by-step explanation:

10xy-12+15x-8y=(10xy-8y)+(15x-12)=\\=2y*(5x-4)+3*(5x-4)=(5x-4)*(2y+3).

4 0
2 years ago
What is the relationship between the ratios? 10/24 and 5/12 Drag and drop to complete the statement. The ratios are proportional
Sunny_sXe [5.5K]
5/12 multiplied by 2 equals 10/24 which when divided by 2 it equals 5/12
3 0
4 years ago
Deb deposited $70 in a savings account earning 10% interest, compounded annually.
bija089 [108]

Answer:

Deb will have $93.17 in 3 years

Step-by-step explanation:

FV = P(1 + r)^n

FV = 70(1+0.1)^3

FV = 70(1.331)

FV = 93.17

7 0
3 years ago
A plane traveled from California and back. It took one hour longer on the way out than it did on the way back. The plane's avera
andrezito [222]

300t = 350(t-1)

300t = 350t-350

-50t=-350

t = -350 /-50

t = 7 hours

4 0
3 years ago
Read 2 more answers
Evaluate the limit
wel

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

3 0
2 years ago
Read 2 more answers
Other questions:
  • Chloe collected data and then displayed her results in the table. What is the unit measure of data? Plz help
    12·2 answers
  • The cost of apples at foodtown is 3 for 69 cents, how many apples can I purchase for $30?
    10·1 answer
  • Which answer choice correctly represents the quotient of 4,232: 21?
    8·1 answer
  • Priya has a recipe for banana bread. She uses 17 1/2 cups of flower to make 5 loaves of bread Andre will follow the same recipe.
    13·1 answer
  • Find the GCF of 27, 45, 36
    5·1 answer
  • There are 5 songs on an album. If you shuffle the songs on your phone, what is the probability they will play in
    7·1 answer
  • A baby gains about 15 pounds each month. About how much weight will the baby have gained after 6 months? a. About 7.5 pounds b.
    9·2 answers
  • A scuba diver dives 243 feet into the ocean and then swims up 156
    6·1 answer
  • What is the slope-intercept form of the function described by this table? X 1 2 3 4 y 8 13 18 23 Enter your answer by filling in
    13·1 answer
  • D. Mrs. Buchanan decided to throw her daughter a sweet sixteen party. She rented a room at a local venue for $500 a night plus $
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!