1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
trasher [3.6K]
3 years ago
11

Explain how mental math can be used to estimate a 15% tip on a taxi ride that costs $23.25 Find the tip using that method. Halp

pllz!
Mathematics
1 answer:
gizmo_the_mogwai [7]3 years ago
7 0

Answer:

$3.4875

Step-by-step explanation:

AS the ride is completed and according the rule the person have to give a tip on the total taxi ride

according to the given

tip given 15%

Total ride cost = $23.25

To find is the total tip given in dollars

Solution:

Total tip in dollars = 15 % of total ride cost

Putting the values of the given

Total tip in dollars = 15 % of 23.25

it can be written as

                             = \frac{15*23.25}{100}

                              =\frac{348.75}{100}

                               =$ 3.4875

So the total tip would be $3.4875

You might be interested in
2,17,82,257,626,1297 next one please ?​
In-s [12.5K]

The easy thing to do is notice that 1^4 = 1, 2^4 = 16, 3^4 = 81, and so on, so the sequence follows the rule n^4+1. The next number would then be fourth power of 7 plus 1, or 2402.

And the harder way: Denote the <em>n</em>-th term in this sequence by a_n, and denote the given sequence by \{a_n\}_{n\ge1}.

Let b_n denote the <em>n</em>-th term in the sequence of forward differences of \{a_n\}, defined by

b_n=a_{n+1}-a_n

for <em>n</em> ≥ 1. That is, \{b_n\} is the sequence with

b_1=a_2-a_1=17-2=15

b_2=a_3-a_2=82-17=65

b_3=a_4-a_3=175

b_4=a_5-a_4=369

b_5=a_6-a_5=671

and so on.

Next, let c_n denote the <em>n</em>-th term of the differences of \{b_n\}, i.e. for <em>n</em> ≥ 1,

c_n=b_{n+1}-b_n

so that

c_1=b_2-b_1=65-15=50

c_2=110

c_3=194

c_4=302

etc.

Again: let d_n denote the <em>n</em>-th difference of \{c_n\}:

d_n=c_{n+1}-c_n

d_1=c_2-c_1=60

d_2=84

d_3=108

etc.

One more time: let e_n denote the <em>n</em>-th difference of \{d_n\}:

e_n=d_{n+1}-d_n

e_1=d_2-d_1=24

e_2=24

etc.

The fact that these last differences are constant is a good sign that e_n=24 for all <em>n</em> ≥ 1. Assuming this, we would see that \{d_n\} is an arithmetic sequence given recursively by

\begin{cases}d_1=60\\d_{n+1}=d_n+24&\text{for }n>1\end{cases}

and we can easily find the explicit rule:

d_2=d_1+24

d_3=d_2+24=d_1+24\cdot2

d_4=d_3+24=d_1+24\cdot3

and so on, up to

d_n=d_1+24(n-1)

d_n=24n+36

Use the same strategy to find a closed form for \{c_n\}, then for \{b_n\}, and finally \{a_n\}.

\begin{cases}c_1=50\\c_{n+1}=c_n+24n+36&\text{for }n>1\end{cases}

c_2=c_1+24\cdot1+36

c_3=c_2+24\cdot2+36=c_1+24(1+2)+36\cdot2

c_4=c_3+24\cdot3+36=c_1+24(1+2+3)+36\cdot3

and so on, up to

c_n=c_1+24(1+2+3+\cdots+(n-1))+36(n-1)

Recall the formula for the sum of consecutive integers:

1+2+3+\cdots+n=\displaystyle\sum_{k=1}^nk=\frac{n(n+1)}2

\implies c_n=c_1+\dfrac{24(n-1)n}2+36(n-1)

\implies c_n=12n^2+24n+14

\begin{cases}b_1=15\\b_{n+1}=b_n+12n^2+24n+14&\text{for }n>1\end{cases}

b_2=b_1+12\cdot1^2+24\cdot1+14

b_3=b_2+12\cdot2^2+24\cdot2+14=b_1+12(1^2+2^2)+24(1+2)+14\cdot2

b_4=b_3+12\cdot3^2+24\cdot3+14=b_1+12(1^2+2^2+3^2)+24(1+2+3)+14\cdot3

and so on, up to

b_n=b_1+12(1^2+2^2+3^2+\cdots+(n-1)^2)+24(1+2+3+\cdots+(n-1))+14(n-1)

Recall the formula for the sum of squares of consecutive integers:

1^2+2^2+3^2+\cdots+n^2=\displaystyle\sum_{k=1}^nk^2=\frac{n(n+1)(2n+1)}6

\implies b_n=15+\dfrac{12(n-1)n(2(n-1)+1)}6+\dfrac{24(n-1)n}2+14(n-1)

\implies b_n=4n^3+6n^2+4n+1

\begin{cases}a_1=2\\a_{n+1}=a_n+4n^3+6n^2+4n+1&\text{for }n>1\end{cases}

a_2=a_1+4\cdot1^3+6\cdot1^2+4\cdot1+1

a_3=a_2+4(1^3+2^3)+6(1^2+2^2)+4(1+2)+1\cdot2

a_4=a_3+4(1^3+2^3+3^3)+6(1^2+2^2+3^2)+4(1+2+3)+1\cdot3

\implies a_n=a_1+4\displaystyle\sum_{k=1}^3k^3+6\sum_{k=1}^3k^2+4\sum_{k=1}^3k+\sum_{k=1}^{n-1}1

\displaystyle\sum_{k=1}^nk^3=\frac{n^2(n+1)^2}4

\implies a_n=2+\dfrac{4(n-1)^2n^2}4+\dfrac{6(n-1)n(2n)}6+\dfrac{4(n-1)n}2+(n-1)

\implies a_n=n^4+1

4 0
3 years ago
Find x and y, given that line WS and line VT are parallel. Show all work!
bulgar [2K]

In the given diagram, the traingles USW and UTV are similar triangles and thus the following ratio equality applies to them.

\frac{VT}{WS} =\frac{VU}{WU}=\frac{TU}{SU}..........(Equation 1)

Checking the diagram given, we see that:

VT=y, WS=22, VU=8, ST=x-2

WU=WV+VU=12+8=20

TU=5

SU=ST+TU=(x-2)+5=x+3

Thus, substituting the required values in (Equation 1) we get:

\frac{y}{22}=\frac{8}{20}=\frac{5}{x+3}

Now, as can be clearly seen, to find y we will use the first two ratios as:

\frac{y}{22}=\frac{8}{20}

y=\frac{8\times 22}{20}=8.8

In a similar manner, to find the value of x we can use the last two ratios:

\frac{8}{20}=\frac{5}{x+3}

After cross multiplication we get:

5\times 20=8(x+3)

Which can be simplified as:

x+3=\frac{100}{8} =12.5

Thus, x=12.5-3=9.5

Therefore, the required answer is:

x=9.5 and y=8.8



7 0
3 years ago
Solve for x.<br> Your answer must be simplfied.<br><br> -7x &gt; 10
masha68 [24]

Answer:

3

Step-by-step explanation:

because its is like subtacting

7 0
2 years ago
Please help i will give brainliest!
iren [92.7K]
Area of square = 24cm²
⇒ Length = √24 

Find the diagonal of half the square:
a² + b² = c²
c² = (0.5√24)² + (√24)²
c² = 6 + 24
c² = 30
c = √30

The diagonal of half of the square is the radius of the circle.
⇒ radius = √30

Area of the semicircle = 1/2πr² = 1/2π(√30)² =15π

Answer: 15π²

5 0
3 years ago
Using the distrubitve property rewrite the expression<br> 6(11+x)
Drupady [299]
66+6x 6 times 11 is 66 6 times x is 6x
8 0
3 years ago
Other questions:
  • Find all polar coordinates of point p where p = (6, -pi/5)
    12·1 answer
  • Which equation shows the quadratic formula used correctly to solve 7x2 = 9+ x for x?
    8·2 answers
  • a painter can paint 20 windows in one day. If he has to paint 50 pairs of windows how much time will he take to paint
    14·1 answer
  • Solve the right triangle. Round decimal answers to the nearest tenth.
    10·1 answer
  • Please help me out :)
    13·1 answer
  • The theoretical probability of a customer
    12·1 answer
  • Candy buys 20 ounces of nuts. Puts equal number of ounces in each of 3 bags. How many ounces of mixed nuts in each bag
    13·1 answer
  • Find the perimeter FOR BRAINLIEST
    10·1 answer
  • Anyone add my sna-p <br>need help with my geometry, it's callmelako <br><br><br><br><br>​
    7·1 answer
  • <img src="https://tex.z-dn.net/?f=%28%5Cfrac%7B8a%5E%7B-5%7Db%5E%7B4%7D%20%7D%7B12a%5E%7B-6%7Db%5E%7B-2%7D%20%7D%29" id="TexForm
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!