Given:
• AB = 6 cm
,
• SM = √15 cm
Let's solve for the following:
• 1) the base elevation AM.
Given that we have a regular triangular pyramid, the length of the three bases are equal.
AB = BC = AC
BM = BC/2 = 6/2 = 3 cm
To solve for AM, which is the height of the base, apply Pythagorean Theorem:
![\begin{gathered} AM=\sqrt{AB^2-BM^2} \\ \\ AM=\sqrt{6^2-3^2} \\ \\ AM=\sqrt{36-9} \\ \\ AM=\sqrt{27} \\ \\ AM=5.2\text{ cm} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20AM%3D%5Csqrt%7BAB%5E2-BM%5E2%7D%20%5C%5C%20%20%5C%5C%20AM%3D%5Csqrt%7B6%5E2-3%5E2%7D%20%5C%5C%20%20%5C%5C%20AM%3D%5Csqrt%7B36-9%7D%20%5C%5C%20%20%5C%5C%20AM%3D%5Csqrt%7B27%7D%20%5C%5C%20%20%5C%5C%20AM%3D5.2%5Ctext%7B%20cm%7D%20%5Cend%7Bgathered%7D)
The base elevation of the pyramid is 5.2 cm.
• (2)., The elevation SO.
To find the elevation of the pyramid, apply Pythagorean Theorem:
![SO=\sqrt{SM^2-MO^2}](https://tex.z-dn.net/?f=SO%3D%5Csqrt%7BSM%5E2-MO%5E2%7D)
Where:
SM = √15 cm
MO = AM/2 = 5.2/2 = 2.6 cm
Thus, we have:
![\begin{gathered} SO=\sqrt{(\sqrt{15})^2-2.6^2} \\ \\ SO=\sqrt{15-6.76} \\ \\ SO=2.9\text{ cm} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20SO%3D%5Csqrt%7B%28%5Csqrt%7B15%7D%29%5E2-2.6%5E2%7D%20%5C%5C%20%20%5C%5C%20SO%3D%5Csqrt%7B15-6.76%7D%20%5C%5C%20%20%5C%5C%20SO%3D2.9%5Ctext%7B%20cm%7D%20%5Cend%7Bgathered%7D)
Length of SO = 2.9 cm
• (3). Area of the base:
To find the area of the triangular base, apply the formula:
![A=\frac{1}{2}*BC*AM](https://tex.z-dn.net/?f=A%3D%5Cfrac%7B1%7D%7B2%7D%2ABC%2AAM)
Thus, we have:
![\begin{gathered} A=\frac{1}{2}*6^*5.2 \\ \\ A=15.6\text{ cm}^2 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20A%3D%5Cfrac%7B1%7D%7B2%7D%2A6%5E%2A5.2%20%5C%5C%20%20%5C%5C%20A%3D15.6%5Ctext%7B%20cm%7D%5E2%20%5Cend%7Bgathered%7D)
The area of the base is 15.6 square cm.
• (4). Area of the side surface.
Apply the formula:
![SA=\frac{1}{2}*p*h](https://tex.z-dn.net/?f=SA%3D%5Cfrac%7B1%7D%7B2%7D%2Ap%2Ah)
Where:
p is the perimeter
h is the slant height, SM = √15 cm
Thus, we have:
![\begin{gathered} A=\frac{1}{2}*(6*3)*\sqrt{15} \\ \\ A=34.86\text{ cm}^2 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20A%3D%5Cfrac%7B1%7D%7B2%7D%2A%286%2A3%29%2A%5Csqrt%7B15%7D%20%5C%5C%20%20%5C%5C%20A%3D34.86%5Ctext%7B%20cm%7D%5E2%20%5Cend%7Bgathered%7D)
• (5). Total surface area:
To find the total surface area, apply the formula:
![TSA=base\text{ area + area of side surface}](https://tex.z-dn.net/?f=TSA%3Dbase%5Ctext%7B%20area%20%2B%20area%20of%20side%20surface%7D)
Where:
Area of base = 15.6 cm²
Area of side surface = 34.86 cm²
TSA = 15.6 + 34.86 = 50.46 cm²
The total surface area is 50.46 cm²
• (6). Volume:
To find the volume, apply the formula:
![V=\frac{1}{3}*area\text{ of base *height}](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B1%7D%7B3%7D%2Aarea%5Ctext%7B%20of%20base%20%2Aheight%7D)
Where:
Area of base = 15.6 cm²
Height, SO = 2.9 cm
Thus, we have:
![\begin{gathered} V=\frac{1}{3}*15.6*2.9 \\ \\ V=15.08\text{ cm}^3 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20V%3D%5Cfrac%7B1%7D%7B3%7D%2A15.6%2A2.9%20%5C%5C%20%20%5C%5C%20V%3D15.08%5Ctext%7B%20cm%7D%5E3%20%5Cend%7Bgathered%7D)
The volume is 15.08 cm³.
ANSWER:
• 1.) 5.2 cm
,
• 2.) 2.9 cm
,
• 3.) 15.6 cm²
,
• 4.) 34.86 cm²
,
• (5). 50.46 cm²
,
• 6). 15.08 cm³.