Answer:
w(-15-w)= 0
w= 0 or (-15-w) = 0
Now,
-15-w =0
w= -15
So,The solution of w(-15-w) = 0
w= 0, -15
Answer:
336 sq un
Step-by-step explanation:
The area of a rhombus is pq/2 where p and q are the diagonals.
you have:
p = 12 + 12 = 24
q = 18 + 10 = 28
so the formula would be:
24 * 28 / 2 = 336 sq un
Answer:
three consecutive odd integers are.

Step-by-step explanation:
Let x be the first term of odd integer,
Therefore, the second consecutive odd integers = 
Similarly, the third consecutive odd integers = 
Given:
The sum of the first term and second term is 344.
first term + second term = 344
Here first term is x and second term is
.





Therefore, the first odd integers is 171.
And the second consecutive odd integers = 
Similarly, the third consecutive odd integers = 
Answer:
After a translation, the measures of the sides and angles on any triangle would be the same since translation only involves changing the coordinates of the vertices of the triangle.
After a rotation, the measures of the sides and angles of a triangle would also be the same. Similar to translation, the proportion of the triangle is unchanged after a rotation.
After a reflection, the triangle's sides and angles would still be the same since reflection is a rigid transformation and the proportion of the sides and angles are not changed.
Step-by-step explanation:
Rigid transformations, i.e. translations, rotations, and reflections, preserve the side lengths and angles of any figure. Therefore, after undergoing a series of rigid transformations, the side lengths and angle measures of any triangle will be the same as the original triangle, generally speaking, in another position.
Answer:
The highest altitude that the object reaches is 576 feet.
Step-by-step explanation:
The maximum altitude reached by the object can be found by using the first and second derivatives of the given function. (First and Second Derivative Tests). Let be
, the first and second derivatives are, respectively:
First Derivative

Second Derivative

Then, the First and Second Derivative Test can be performed as follows. Let equalize the first derivative to zero and solve the resultant expression:


(Critical value)
The second derivative of the second-order polynomial presented above is a constant function and a negative number, which means that critical values leads to an absolute maximum, that is, the highest altitude reached by the object. Then, let is evaluate the function at the critical value:


The highest altitude that the object reaches is 576 feet.