Okay so you need to start off by using the distributive property, meaning you are going to multiply -2 by both items within the parentheses. this gives you -2x + 10 = -14. from here you want to isolate x, so you’ll subtract both sides by 10 to move it to the other side. this gives you -2x=-24. then you’ll divide both sides by -2 to completely isolate x. this gives you x=12. does that make sense?
100 divided by 50 is 2.
So multiply the change by 2, so 2 times 3.
Answer is 6 percent.
Answer: 2x-52
Step-by-step explanation:
Answer:
33cm
Step-by-step explanation:
385 / 35 = 11
11 times 3 = 33
Answer:
a) The probability that at least 3 months elapse before the first earthquake of destructive magnitude occurs is P=0.7788
b) The probability that at least 7 months elapsed before the first earthquake of destructive magnitude occurs knowing that 3 months have already elapsed is P=0.7165
Step-by-step explanation:
Tha most appropiate distribution to model the probability of this events is the exponential distribution.
The cumulative distribution function of the exponential distribution is given by:
The destructive earthquakes happen in average once a year. This can be expressed by the parameter λ=1/year.
We can express the probability of having a 3 month period (t=3/12=0.25) without destructive earthquakes as:
Applying the memory-less property of the exponential distribution, in which the past events don't affect the future probabilities, the probability of having at least 7 months (t=0.58) elapsed before the first earthquake given that 3 months have already elapsed, is the same as the probability of having 4 months elapsed before an earthquake.