Using the distance formula,
, what is the distance between point (-2, 2) and point (4, 4) rounded to the nearest tenth?
Using the points given, plug them into the equation.
![d = \sqrt{(x_{2} - x_{1})^2 + (y_{2} - y_{1})^2 } \\d = \sqrt{((4) - (-2))^2 + ((4) - (2)^2 } \\d=\sqrt{(4+2)^2 + (4-2)^2}\\d=\sqrt{(6)^2 + (2)^2} \\d=\sqrt{36+4} \\d=\sqrt{40} \\](https://tex.z-dn.net/?f=d%20%3D%20%5Csqrt%7B%28x_%7B2%7D%20-%20x_%7B1%7D%29%5E2%20%2B%20%28y_%7B2%7D%20-%20y_%7B1%7D%29%5E2%20%20%7D%20%5C%5Cd%20%3D%20%5Csqrt%7B%28%284%29%20-%20%28-2%29%29%5E2%20%2B%20%28%284%29%20-%20%282%29%5E2%20%20%7D%20%5C%5Cd%3D%5Csqrt%7B%284%2B2%29%5E2%20%2B%20%284-2%29%5E2%7D%5C%5Cd%3D%5Csqrt%7B%286%29%5E2%20%2B%20%282%29%5E2%7D%20%20%5C%5Cd%3D%5Csqrt%7B36%2B4%7D%20%5C%5Cd%3D%5Csqrt%7B40%7D%20%5C%5C)
Plug this into a calculator and you get 6.32455532
Since you only need it up to the tenth (0.1), round up 6.32
<em>Five or more, let it soar. Four or less, let it rest.</em>
Since two is lower than four, we drop it.
Therefore, the distance between points (-2, 2) and (4, 4) is 6.3
Hope this helps ^w^