Answer:
The equations represent the line that is parallel to 3x - 4y = 7 and pass through the point (-4,-2) are:
Step-by-step explanation:
The slope-intercept form of the line equation
where
Given the line
3x - 4y = 7
writing in the slope-intercept form
4y = 3x - 7
dividing both sides by 4
4y/4 = 3/4x - 7/4
y = 3/4x - 7/4
Now, comparing with the slope-intercept form of the line equation
y = 3/4x - 7/4
The slope of the line m = 3/4
We know that parallel lines have the same slopes.
Therefore, the slope of the parallel line is: 3/4
now we have,
The point (-4, -2)
The slope m of parallel line = 3/4
Given the point-slope form of the line equation
where m is the slope of the line and (x₁, y₁) is the point
substituting (-4, -2) and m = 3/4 in the point-slope form of line equation


Thus, the equation in the point-slope form of the line equation is:

Simplifying the equation

Subtract 3 from both sides


Multiplying the equation by 4


Therefore, the equations represent the line that is parallel to 3x - 4y = 7 and pass through the point (-4,-2) are:
Answer:
The correct answer is: Option D) 5
Step-by-step explanation:
Given equation is:

In order to find that which values of x makes the equation true, we have to put each value of x in the equation. When both sides of equations will be equal, that value of x will be true for the equation.
Putting x = 2

Putting x = 3

Putting x=4

Putting x = 5

The equation is true for x = 5
Hence,
The correct answer is: Option D) 5
Answer:
B) 6(x+2y) + 4 = 6x + 12 y + 4