Answer:
(A)![AC=10sin40^{\circ}](https://tex.z-dn.net/?f=AC%3D10sin40%5E%7B%5Ccirc%7D)
Step-by-step explanation:
From the given figure, it is given that ABC is a right angled triangle which is right angled at C and AC=b, CB=a and AB=10in.
Now, using the trigonometry, we have
![\frac{AC}{AB}=sinB](https://tex.z-dn.net/?f=%5Cfrac%7BAC%7D%7BAB%7D%3DsinB)
Substituting the given values, we have
![\frac{AC}{10}=sin40^{\circ}](https://tex.z-dn.net/?f=%5Cfrac%7BAC%7D%7B10%7D%3Dsin40%5E%7B%5Ccirc%7D)
![AC=10sin40^{\circ}](https://tex.z-dn.net/?f=AC%3D10sin40%5E%7B%5Ccirc%7D)
Thus, the above equation can be used to find the value of AC, therefore
⇒![b=10sin40^{\circ}](https://tex.z-dn.net/?f=b%3D10sin40%5E%7B%5Ccirc%7D)
⇒![b=10(0.642)](https://tex.z-dn.net/?f=b%3D10%280.642%29)
⇒![b=6.42 in](https://tex.z-dn.net/?f=b%3D6.42%20in)
Thus, the value of AC is 6.42 inches.