Answer:
Given: In parallelogram ABCD, AC=BD
To prove : Parallelogram ABCD is rectangle.
Proof : in △ACB and △BDA
AC=BD ∣ Given
AB=BA ∣ Common
BC=AD ∣ Opposite sides of the parallelogram ABCD
△ACB ≅△BDA∣SSS Rule
∴∠ABC=∠BAD...(1) CPCT
Again AD ∥ ∣ Opposite sides of parallelogram ABCD
AD ∥BC and the traversal AB intersects them.
∴∠BAD+∠ABC=180∘ ...(2) _ Sum of consecutive interior angles on the same side of the transversal is
180∘
From (1) and (2) ,
∠BAD=∠ABC=90∘
∴∠A=90∘ and ∠C=90∘
Parallelogram ABCD is a rectangle.
We have to find the lengths of the diagonals KM and JL:
d ( KM ) = √ (( - a - b )² + ( 0 - c )²) = √ (( a + b )² + c² )
d ( JL ) = √ ( ( a - ( - b ) )² + ( 0 - c )²) = √ ( ( a + b )² + c² )
So the lengths of the diagonals KM and JL are congruent.
The lengths of the diagonals of the isosceles trapezoid are congruent.
Answer:
A
Step-by-step explanation:
35 + 40 + 50 = 125
35/125 = 0.28
The standard form of any linear equation with two variables is

, where a, b, and c are constants. To convert this equation to standard form, simply subtract

from both sides to get

We could leave it in this form, though, in this case, it might be better at if we multiplied both sides by -1 to get