1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
weqwewe [10]
4 years ago
11

10 POINTS!!! FULL ANSWER WITH FULL STEP BY STEP SOLUTION PLEASE

Mathematics
1 answer:
laila [671]4 years ago
5 0
A moderator opened up some room for me. See all the comments. Take care.
You might be interested in
Please Help!! (15 pts)
hammer [34]
The answer is C) 58.5 sq. units

Just count the whole unit squares within the shape and estimate the partial ones and add them all together to get the estimated area of the irregular shape. There were 57 full squares and 3 halves for a total of 58.5 units.
8 0
3 years ago
Write the percent as a fraction or mixed number in simplest form.
ddd [48]
As a fraction the answer would be 5/16

8 0
3 years ago
Read 2 more answers
A vehicle is purchased for $19,800 and the lender requires a down payment of 20% of the purchase prize find the down payment
nadezda [96]
3,960. 19,800x2%=19,800x.2=3,960
3 0
3 years ago
Read 2 more answers
To test Upper H 0​: muequals50 versus Upper H 1​: muless than50​, a random sample of size nequals23 is obtained from a populatio
natta225 [31]

Answer:

Step-by-step explanation:

Hello!

1)

<em>To test H0: u= 50 versus H1= u < 50, a random sample size of n = 23 is obtained from a population that is known to be normally distributed. Complete parts A through D. </em>

<em> A) If  ¯ x = 47.9  and s=11.9, compute the test statistic .</em>

For thistest the corresponsing statistis is a one sample t-test

t= \frac{X[bar]-Mu}{\frac{S}{\sqrt{n} } }~~t_{n-1}

t_{H_0}= \frac{47.9-50}{\frac{11.9}{\sqrt{23} } } = -0.846= -0.85

B) If the researcher decides to test this hypothesis at the a=0.1 level of significance, determine the critical value(s).

This test is one-tailed to the left, meaning that you'll reject the null hypothesis to small values of the statistic. The ejection region is defined by one critical value:

t_{n-1;\alpha }= t_{22;0.1}= -1.321

Check the second attachment. The first row shows α= Level of significance; the First column shows ν= sample size.

The t-table shows the values of the statistic for the right tail. P(tₙ≥α)

But keep in mind that this distribution is centered in zero, meaning that the right and left tails are numerically equal, only the sign changes. Since in this example the rejection region is one-tailed to the left, the critical value is negative.

C) What does the distribution graph appear like?

Attachment.

D) Will the researcher reject the null hypothesis?

As said, the rejection region is one-tailed to the right, so the decision rule is:

If t_{H_0} ≤ -1.321, reject the null hypothesis.

If t_{H_0} > -1.321, do not reject the null hypothesis.

t_{H_0}= -0.85, the decision is to not reject the null hypothesis.

2)

To test H0​: μ=100 versus H1​:≠​100, a simple random sample size of nequals=24 is obtained from a population that is known to be normally distributed. Answer parts​ (a)-(d).

a) If x =104.2 and s=9.6, compute the test statistic.

For this example you have to use a one sample t-test too. The formula of the statistic is the same:

t_{H_0}= \frac{X[bar]-Mu}{\frac{S}{\sqrt{n} } } = \frac{104.2-100}{\frac{9.6}{\sqrt{24} } = } = 2.143

b) If the researcher decides to test this hypothesis at the α=0.01 level of​ significance, determine the critical values.

This hypothesis pair leads to a two-tailed rejection region, meaning, you'll reject the null hypothesis at either small or big values of the statistic. Then the rejection region is divided into two and determined by two critical values (the left one will be negative and the right one will be positive but the module of both values will be equal).

t_{n-1;\alpha/2 }= t_{23; 0.005}= -2.807

t_{n-1;1-\alpha /2}= t_{23;0.995}= 2.807

c) Draw a​ t-distribution that depicts the critical​ region(s). Which of the following graphs shows the critical​ region(s) in the​t-distribution?

Attachment.

​(d) Will the researcher reject the null​ hypothesis?

The decision rule for the two-tailed hypotheses pair is:

If t_{H_0} ≤ -2.807 or if t_{H_0} ≥ 2.807, reject the null hypothesis.

If -2.807 < t_{H_0} < 2.807, do not reject the null hypothesis.

t_{H_0}= 2.143 is greater than the right critical value, the decision is to reject the null hypothesis.

Correct option:

B. The researcher will reject the null hypothesis since the test statistic is not between the critical values.

3)

Full text in attachment. The sample size is different by 2 but it should serve as a good example.

H₀: μ = 20

H₁: μ < 20

a) n= 18, X[bar]= 18.3, S= 4, Compute statistic.

t_{H_0}= \frac{X[bar]-Mu}{\frac{S}{\sqrt{n} } }= \frac{18.3-20}{\frac{4}{\sqrt{18} } } = -1.80

b) The rejection region in this example is one-tailed to the left, meaning that you'll reject the null hypothesis to small values of t.

Out of the three graphics, the correct one is A.

c)

To resolve this you have to look for the values in the t-table that are the closest to the calculated t_{H_0}

Symbolically:

t_{n-1;\alpha_1 } \leq t_{H_0}\leq t_{n-1;\alpha _2}

t_{H_0}= -1.80

t_{17; 0.025 }= -2.110

t_{17;0.05}= -1.740

Roughly defined you can say that the p-value is the probability of obtaining the value of t_{H_0}, symbolically: P(t₁₇≤-1.80)

Under the distribution the calculated statistic is between the values of -2.110 and -1.740, then the p-value will be between their cumulated probabilities:

A. 0.025 < p-value < 0.05

d. The researcher decides to test the hypothesis using a significance level of α: 0.05

Using the p-value approach the decision rule is the following:

If p-value ≤ α, reject the null hypothesis.

If p-value > α, do not reject the null hypothesis.

We already established in item c) that the p-value is less than 0.05, so the decision is to reject the null hypothesis.

Correct option:

B. The researcher will reject the null hypothesis since the p-value is less than α.

I hope this helps!

6 0
3 years ago
This isosceles triangle has two sides of equal length, that are longer than the length of the base, b. The perimeter of the tria
Elena-2011 [213]

Assuming you're asking what b is:

Substitute and Subtract

2a + b = 15.7 \\ 2(6.3) + b = 15.7 \\ 12.6 + b = 15.7 \\ b = 3.1

6 0
3 years ago
Other questions:
  • A mule deer can run 1/4 of a mile in 25 seconds. At this rate which expression can be used to determine how fast a mule deer run
    11·1 answer
  • What is something you want for cristmas.
    10·2 answers
  • 3) Daley's Pizzeria makes 40 pizzas each hour 37 of the pizzas ars mushroom. What is the wal
    13·1 answer
  • I need help with this thanks :)
    8·1 answer
  • 2x+5+12=2x+2+14 <br><br>how would I solve this?​
    8·2 answers
  • Element X is a radioactive isotope such that every 11 years, its mass decreases by half. Given that the initial mass of a sample
    6·1 answer
  • The first side of a triangle is four inches longer than twice the
    9·1 answer
  • What is 8 2/5 minus 5/8
    15·2 answers
  • NEED ANSWER NOW PLSS​
    15·1 answer
  • Find the slope of every line that is parallel to the line on the graph.​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!