Answer:
(3, 3 )
Step-by-step explanation:
Given the 2 equations
3x - y = 6 → (1)
6x + y = 21 → (2)
Adding the 2 equations term by term will eliminate y, that is
(6x + 3x) + (y - y) = (21 + 6), that is
9x = 27 (divide both sides by 9 )
x = 3
Substitute x = 3 into either (1) or (2) and solve for y
Using (2), then
(6 × 3) + y = 21
18 + y = 21 ( subtract 18 from both sides )
y = 3
Solution is (3, 3 )

We want to find
such that
. This means



Integrating both sides of the latter equation with respect to
tells us

and differentiating with respect to
gives

Integrating both sides with respect to
gives

Then

and differentiating both sides with respect to
gives

So the scalar potential function is

By the fundamental theorem of calculus, the work done by
along any path depends only on the endpoints of that path. In particular, the work done over the line segment (call it
) in part (a) is

and
does the same amount of work over both of the other paths.
In part (b), I don't know what is meant by "df/dt for F"...
In part (c), you're asked to find the work over the 2 parts (call them
and
) of the given path. Using the fundamental theorem makes this trivial:


Answer:
-48
Step-by-step explanation:
Answer:
I think it would be 34 because I divided 68.2 by 4 and got 17.05, so I multiplied that by 2, and it's closest to 34.
<em>So I think it's A.</em>
But y'all don't be mad if I'm wrong cuz I said I think.