Answer:
One way to identify alternate exterior angles is to see that they are the vertical angles of the alternate interior angles.
Step-by-step explanation:
so if I was you I would use that strategy to try to find the pair of the Alternate exterior angles.
so the agles are probably 1 and 7 but i don’t want you to get it wrong so here’s a picture Of an example.
4, 8, 12, 16 I can’t see your table but I think these are the answers. :)
Answer
67.5
45° would be the other angle of 2x°
180° - 45° = 135°
135/45 = 67.5°
Answer:
Step-by-step explanation:
We have given a parallelogram ABCD.
For a parallelogram,
Opposite pair of sides are parallel to each other.
i.e AD is parallel to BC and AB is parallel to CD.
From the attached figure,
∡1 = ∡4 and ∡2 = ∡3 {If two parallel lines cut by a transversal line then alternate interior angles are congruent }
Next, AC ≅ AC {Reflexive identity}
hence, ΔABC ≅ ΔCDA , By Angle-Side-Angle(ASA) congruent property of triangle.
Therefore, AB = CD and AD = BC {Proved}