<span>B.
x-intercept: –3; y-intercept: 7</span>
Answer:
122*
122 degrees
Step-by-step explanation:
m∠GEF is 13 less than 5 times m∠DEG and m∠DEF = 149*
Solution:
As per given data,
m∠GEF = 5m∠DEG - 13* … (i)
m∠DEF = 149* -> m∠GEF + m∠DEG = 149* .. (ii)
Substituting value of m∠GEF in (ii)
We get,
(5m ∠DEG - 13*) + m∠DEG = 149*
6m ∠DEG - 13* = 149*
6m ∠DEG = 149* + 13* = 162*
m∠DEG = * = 27*
Substituting value of m∠DEG in (i)
We get,
m∠GEF = 5(27*) - 13*
m∠GEF = 135* - 13* = 122*
Answer:
The answer is 16.746667
Step-by-step explanation:
1) Simplify 3.14 × 16 to 50.24.

2) Simplify 50.24 ÷ 3 to 16.746667.

<u>Therefor</u><u>. </u><u>the</u><u> </u><u>answer</u><u> </u><u>is</u><u> </u><u>16.746667.</u>
Answer:
the answer is D
Step-by-step explanation:
Answer:
A= 0,2
B= 0,2
C= 0,4
D=0,2
Step-by-step explanation:
We know that only one team can win, so the sum of each probability of wining is one
P(A)+P(B)+P(C)+P(D)=1
then we Know that the probability of Team A and B are the same, so
P(A)=P(B)
And that the the probability that either team A or team C wins the tournament is 0.6, so P(A)+Pc)= 0,6, then P(C)= 0.6-P(A)
Also, we know that team C is twice as likely to win the tournament as team D, so P(C)= 2 P(D) so P(D) = P(C)/2= (0.6-P(A))/2
Now if we use the first formula:
P(A)+P(B)+P(C)+P(D)=1
P(A)+P(A)+0.6-P(A)+(0.6-P(A))/2=1
0,5 P(A)+0.9=1
0,5 P(A)= 0,1
P(A)= 0,2
P(B)= 0,2
P(C)=0,4
P(D)=0,2