Answer:

Step-by-step explanation:

This is written in the standard form of a quadratic function:

where:
- ax² → quadratic term
- bx → linear term
- c → constant
You need to convert this to vertex form:

where:
To find the vertex form, you need to find the vertex. For this, use the equation for axis of symmetry, since this line passes through the vertex:

Using your original equation, identify the a, b, and c terms:

Insert the known values into the equation:

Simplify. Two negatives make a positive:

X is equal to 3 (3,y). Insert the value of x into the standard form equation and solve for y:

Simplify using PEMDAS:

The value of y is -6 (3,-6). Insert these values into the vertex form:

Insert the value of a and simplify:

:Done
Answer:
16 cm
Step-by-step explanation:
- 4 × 4 = 16 cm
I hope this helps!
The expected value per game is -0.26. Over 1000 games, you can expect to lose $263.16.
To find the expected value, we multiply the probability of winning by the amount of winnings, the probability of losing by the amount of loss, and adding those together.
We have a 1/38 chance of winning; 1/38(175) = $4.61. We also have a 37/38 chance of losing; 37/38(5) = $4.87.
$4.61-$4.87 = -$0.26 (rounded)
To five decimal places, our answer is -0.26136; multiplied by 1000 games, this is $261.36 lost.
The answer is going to be v= 4500ft3;S=900ft2