Answer:
The question lacks options, the options are:
A) 1 out of 16
B) 3 out of 16
C) 6 out of 16
D) 9 out of 16
The answer is 1 out of 16
Explanation:
This is a DIHYBRID cross because it involves two different genes coding for distinct traits. One of the traits will be dominant while the other recessive. Hence, parents that are purebred for opposite forms of the trait means that one parent is homozygous dominant while the other is homozygous recessive. When these two parents cross, they produce F1 offsprings that all possess the dominant trait but heterozygous/hybrids.
When these hybrids are self-crossed, they produce four different combinations of gametes which when crossed using a punnet square will result in F2 offsprings with a 9:3:3:1 phenotypic ratio according to Mendel's observation.
9 represents offsprings that are dominant for both traits
The two 3's represents offsprings that are recessive for one trait and dominant for the other respectively.
1 represents offsprings that are homozygous recessive for both traits.
Hence, 1 out of 16 offsprings will be homozygous recessive for both traits.
Answer:
either B or D because at the end Whilst the ultimate outcome of the lytic cycle is production of new phage progeny and death of the host bacterial cell, this is a multistep process involving precise coordination of gene transcription and physical processes.
Answser
it migth be B i am not sure
Many autotrophs make food through the
process of photosynthesis, in which light energy from the sun is changed
to chemical energy that is stored in glucose. All organisms use cellular respiration to break down glucose, release its energy, and make ATP. Autotrophs are also called producers. They produce food not only for themselves but for all other living things as well (which are known as consumers). This is why autotrophs form the basis of food chains.
Yes, autotrophs need to perform cellular respiration.