There isn't enough info to prove the triangles to be congruent or not. So we can't say for sure either way.
We have angle CAD = angle ACB given by the arc markings, and we know that AC = AC due to the reflexive theorem. However we are missing one third piece of information.
That third piece of info could be....
- AD = BC which allows us to use SAS
- angle ACD = angle CAB which allows us to use ASA
- angle ABC = angle CDA which allows us to use AAS (slight variation of ASA)
Since we don't know any of those three facts, we simply don't have enough information.
side note: If AB = CD, then this leads to SSA which is not a valid congruence theorem. If we had two congruent sides, the angle must be between the two sides, which is what AD = BC allows.
Answer:
2.25
Step-by-step explanation:
in order to find the scale factor from A to B you need to divide B by A. 13.5÷6=2.25. 11.25÷5=2.25 and 4.5÷2=2.25.
therefore the scale factor is 2.25 because when you multiply the sides from A by 2.25 you get the length of the side from B.
There was originally one red marble in the bag because at first the probability was 1 in 5 therefore the other 4 were blue and there was only 1 red
Answer:

Step-by-step explanation:
We have been given a diagram. We are asked to find the measure of angle EBD.
Since ray BD is angle bisector of angle EBC, so measure of angle EBD will be equal to measure of angle DBC.








To find measure of angle EBD, we will substitute
in expression
as:



Therefore, measure of angle EBD is 40 degrees.
Step-by-step explanation:
<em>Hi</em><em> </em><em>there</em><em>!</em><em>!</em>
<em>Here</em><em>,</em><em> </em><em>the</em><em> </em><em>thing</em><em> </em><em>is</em><em> </em><em>we</em><em> </em><em>should</em><em> </em><em>add</em><em> </em><em>them</em><em> </em><em>first</em><em> </em><em>yaa</em><em>.</em>
<em>so</em><em>,</em><em> </em><em>let's</em><em> </em><em>add</em><em> </em><em>them</em>
<em>
</em>
<em>by</em><em> </em><em>taking</em><em> </em><em>lcm</em><em> </em><em>we</em><em> </em><em>get</em><em> </em><em>their</em><em> </em><em>lcm</em><em> </em><em>is</em><em> </em><em>6</em><em> </em><em>and</em><em> </em><em>let's</em><em> </em><em>do</em><em> </em><em>it</em><em> </em><em>according</em><em> </em><em>to</em><em> </em><em>that</em><em>,</em>
<em>
</em>
<em>now</em><em>,</em><em> </em><em>let's</em><em> </em><em>simplify</em><em> </em><em>them</em><em> </em><em>ok</em><em>.</em><em>.</em>
<em>
</em>
<em>so</em><em>,</em><em> </em><em>we</em><em> </em><em>get</em><em> </em><em>2</em><em>/</em><em>6</em><em> </em><em>(</em><em>i.e</em><em> </em><em>1</em><em>/</em><em>3</em><em>)</em>
<em>now</em><em>,</em><em> </em><em>the</em><em> </em><em>number</em><em> </em><em>line</em><em> </em><em>must</em><em> </em><em>be</em><em> </em><em>greator</em><em> </em><em>than</em><em> </em><em>1</em><em> </em><em>and</em><em> </em><em>less</em><em> </em><em>than</em><em> </em><em>1</em><em>.</em>
<em><u>Hope</u></em><em><u> </u></em><em><u>it helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>