1/20 is equal to 5/100, meaning 5% have a bird
Answer:
a) 6 gigabytes
b) $100
Step-by-step explanation:
Let c represent the total cost in dollars and d represent the amount of data used in gigabytes.
For the first smartphone
One smartphone plan costs $52 per month for talk and messaging and $8 per gigabyte of data used each month.
Equation =
c = 52 + 8d
For the Second smartphone
A second smartphone plan costs $82 per month for talk and messaging and $3 per gigabyte of data used each month.
Equation =>
c = 82 + 3d
How many gigabytes would have to be used for the plans to cost the same?
We would equate both cost to each other
52 + 8d = 82 + 3d
Collect like terms
8d - 3d = 82 - 52
5d = 30
d = 30/5
d = 6
Therefore,
a) The number of gigabytes for the cost of both Smartphone data plans to be the same = 6 gigabytes.
b) The cost of both plans if 6 gigabytes is used =>
c = 52 + 8d
c = 52 + 8 × 6
c = $100
Answer:
5. A) two solutions
6. one solution
Step-by-step explanation:
5. A graph shows the curve has two x-intercepts, so two solutions. You can also figure this by looking at the discriminant:
b^2 -4ac = (7)^2 -4(-4)(8) . . . . a positive number
When the discriminant is positive, there are two real solutions.
__
6. The equation factors as ...
0 = 3(x +3)^2
This will have one real solution at x=-3.
Answer:
-2
Step-by-step explanation:
Since it would be immensely helpful to know the equation of this parabola, we need to figure it out before we can continue. We have the work form of a positive upwards-opening parabola as

where a is the leading coefficient that determines the steepness of lack thereof of the parabola, x and y are coordinates of a point on the graph, and h and k are the coordinates of the vertex. We know the vertex: V(-3, -3), and it looks like the graph goes through the point P(-2, -1). Now we will fill in the work form equation and solve for a:

which simplifies a bit to

and
-1 = a(1) - 3. Therefore, a = 2 and our parabola is

Now that know the equation, we can find the value of y when x = -3 (which is already given in the vertex) and the value of y when x = -4. Do this by subbing in the values of x one at a time to find y. When x = -3, y = -3 so the coordinate of that point (aka the vertex) is (-3, -3). When x = -4, y = -1 so the coordinate of that point is (-4, -1). The average rate of change between those 2 points is also the slope of the line between those 2 points, so we will use the slope formula to find it:

And there you have it! I'm very surprised that this question sat unanswered for so very long! I'm sorry I didn't see it earlier!