For the answer to the question above,
1. If we let x as the side of the square cut-out, the formula for the capacity (volume) of the food dish is:
V = (12 - 2x)(8 - 2x)(x)
V = 96x - 40x^2 + 4x^3
To find the zeros, we equate the equation to 0, so, the values of x that would result to zero would be:
x = 0, 6, 4
2. To get the value of x to obtain the maximum capacity, we differentiate the equation, equate it to zero, and solve for x.
dV/dx = 96 - 80x + 12x^2 = 0
x = 5.10, 1.57
The value of x that would give the maximum capacity is x = 1.57
3. If the volume of the box is 12, then the value of x can be solved using:
12 = 96x - 40x^2 + 4x^3
x = 0.13, 6.22, 3.65
The permissible value of x is 0.13 and 3.65
4. Increasing the cutout of the box increases the volume until its dimension reaches 1.57. After that, the value of the volume decreases it reaches 4.
5. V = (q -2x) (p - 2x) (x)
Answer:
3² or 9
Step-by-step explanation:
Step 1: Add exponents

Step 2: Subtract exponents
You should get 3² because of exponent rules. Remember when you multiply exponents you add the powers and when you divide exponents you subtract the powers.
Answer:
z1 + z2 = 3
Step-by-step explanation:
Since we are given z1 = 2 + √(3)i and z2 = 1 – √(3)i. The sum of z1 + z2 would be:
(2 + √(3)i) + (1 – √(3)i) = 2 + √(3)i + 1 – √(3)i = 2 + 1 + √(3)i – √(3)i = 3
Hence, z1 + z2 = 3.
To find the answer, take the measurement of an edge of the cube, multiply it by 6, and then square that number.
Ex:
Edge = 16
Faces in 1 cube = 6
6 * 16 = 96
96^2 (which is just 96 * 96)= 9,216
I hope this helps! :)