Answer:
The 95% confidence interval for the true mean speed of thunderstorms is [10.712, 13.688].
Step-by-step explanation:
Given information:
Sample size = 10
Sample mean = 12.2 mph
Standard deviation = 2.4
Confidence interval = 95%
At confidence interval 95% then z-score is 1.96.
The 95% confidence interval for the true mean speed of thunderstorms is
![CI=\overline{x}\pm z*\frac{s}{\sqrt{n}}](https://tex.z-dn.net/?f=CI%3D%5Coverline%7Bx%7D%5Cpm%20z%2A%5Cfrac%7Bs%7D%7B%5Csqrt%7Bn%7D%7D)
Where,
is sample mean, z* is z score at 95% confidence interval, s is standard deviation of sample and n is sample size.
![CI=12.2\pm 1.96\frac{2.4}{\sqrt{10}}](https://tex.z-dn.net/?f=CI%3D12.2%5Cpm%201.96%5Cfrac%7B2.4%7D%7B%5Csqrt%7B10%7D%7D)
![CI=12.2\pm 1.487535](https://tex.z-dn.net/?f=CI%3D12.2%5Cpm%201.487535)
![CI=12.2\pm 1.488](https://tex.z-dn.net/?f=CI%3D12.2%5Cpm%201.488)
![CI=[12.2-1.488, 12.2+1.488]](https://tex.z-dn.net/?f=CI%3D%5B12.2-1.488%2C%2012.2%2B1.488%5D)
![CI=[10.712, 13.688]](https://tex.z-dn.net/?f=CI%3D%5B10.712%2C%2013.688%5D)
Therefore the 95% confidence interval for the true mean speed of thunderstorms is [10.712, 13.688].