Answer:
29/12 > x
Step-by-step explanation:
–3(x + 2) > 4x + 5(x – 7)
Distribute
-3x -6 > 4x +5x-35
Combine like terms
-3x-6 > 9x -35
Add 3x to each side
-3x+3x-6 > 9x+3x -35
-6 > 12x-35
Add 35 to each side
-6+35 > 12x -35+35
29 > 12x
Divide each side by 12
29/12 > 12x/12
29/12 > x
Let A = {0,1,2,3,4,5}<br>B = {2,4,6,8}<br>C= {1,3,5,7}<br>Verity (AUB) UC=AU (BUC) <br>
Angelina_Jolie [31]
<em><u>Hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>help</u></em><em><u> </u></em><em><u>u</u></em><em><u>.</u></em>
<em><u>If</u></em><em><u> </u></em><em><u>my</u></em><em><u> </u></em><em><u>ans</u></em><em><u> </u></em><em><u>was</u></em><em><u> </u></em><em><u>helpful</u></em><em><u>,</u></em><em><u> </u></em><em><u>u</u></em><em><u> </u></em><em><u>can</u></em><em><u> </u></em><em><u>follow</u></em><em><u> </u></em><em><u>me</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Radius, r = 3
The equation of a sphere entered at the origin in cartesian coordinates is
x^2 + y^2 + z^2 = r^2
That in spherical coordinates is:
x = rcos(theta)*sin(phi)
y= r sin(theta)*sin(phi)
z = rcos(phi)
where you can make u = r cos(phi) to obtain the parametrical equations
x = √[r^2 - u^2] cos(theta)
y = √[r^2 - u^2] sin (theta)
z = u
where theta goes from 0 to 2π and u goes from -r to r.
In our case r = 3, so the parametrical equations are:
Answer:
x = √[9 - u^2] cos(theta)
y = √[9 - u^2] sin (theta)
z = u
Answer: answer is c
Step-by-step explanation: quizlet