Since we are already given the amount of jumps from the first trial, and how much it should be increased by on each succeeding trial, we can already solve for the amount of jumps from the first through tenth trials. Starting from 5 and adding 3 each time, we get: 5 8 (11) 14 17 20 23 26 29 32, with 11 being the third trial.
Having been provided 2 different sigma notations, which I assume are choices to the question, we can substitute the initial value to see if it does match the result of the 3rd trial which we obtained by manual adding.
Let us try it below:
Sigma notation 1:
10
<span> Σ (2i + 3)
</span>i = 3
@ i = 3
2(3) + 3
12
The first sigma notation does not have the same result, so we move on to the next.
10
<span> Σ (3i + 2)
</span><span>i = 3
</span>
When i = 3; <span>3(3) + 2 = 11. (OK)
</span>
Since the 3rd trial is a match, we test it with the other values for the 4th through 10th trials.
When i = 4; <span>3(4) + 2 = 14. (OK)
</span>When i = 5; <span>3(5) + 2 = 17. (OK)
</span>When i = 6; <span>3(6) + 2 = 20. (OK)
</span>When i = 7; 3(7) + 2 = 23. (OK)
When i = 8; <span>3(8) + 2 = 26. (OK)
</span>When i = 9; <span>3(9) + 2 = 29. (OK)
</span>When i = 10; <span>3(10) + 2 = 32. (OK)
Adding the results from her 3rd through 10th trials: </span><span>11 + 14 + 17 + 20 + 23 + 26 + 29 + 32 = 172.
</span>
Therefore, the total jumps she had made from her third to tenth trips is 172.
Answer:
we have, 1953125=5⁹, so it cannot be a perfect square. If the last digit of a given number is 5, then the last three digits must be perfect squares, 025 or 225 or 625. Otherwise, that number cannot be a perfect square. And as 125 is not a perfect square, so no number ending with 125 can be a perfect square
Answer:
D. y = 4x - 6
Step-by-step explanation:
The equation that is perpendicular to the line MN should have a slope that when multiplied by the slope of line MN will result to negative one. Therefore,
Therefore,
m₁ × m₂ = -1
Using the 2 coordinates of MN let's find the slope,
(-7, 6)(5, 3)
Therefore,
m₁ = 3 - 6 / 5 - (-7) = -3 / 12 = - 1 / 4
The equation that represent a line perpendicular to the line MN is
y = 4x - 6 because the slope slope(m₂) is 4.
From our formula,
4 × - 1 / 4 = - 1
So, option D meets the requirement.
The answer is C. 0.0 1339
You could better find the answer at
https://answers.yahoo.com/question/index?qid=20110628190101AAKUGSE
where someone else has already figured it out