Answer:
No photoelectric effect is observed for Mercury.
Explanation:
From E= hf
h= Plank's constant
f= frequency of incident light
Threshold Frequency of mercury= 435×10^3/ 6.6×10^-34 × 6.02×10^23
f= 11×10^14 Hz
The highest frequency of visible light is 7.5×10^14. This is clearly less than the threshold frequency of mercury hence no electron is emitted from the mercury surface
The Lewis structure of Carbonic Acid (H₂CO₃) is given below. In structure it is shown that carbon has a double bond with one oxygen atom and two single bonds with hydroxyl groups.
Formal Charge; Formal charge is caculated as,
Formal charge = # of valence e⁻ - [# of lone pair of e⁻ + 1/2 # of bonded e⁻]
Formal charge on Carbon;Formal charge = 4 - [ 0 + 8/2]
Formal charge = 4 - [4]
Formal charge = Zero
Answer:
50mL of 4M NaCl, 80mL of 40% glucose, 20mL of 1M Tris-HCl (pH 8.5) and 250mL of water.
Explanation:
To make 400mL containing 0.5M NaCl you need to add:
4M / 0.5M = 8 (dilution 1/8). 400mL / 8 = <em>50 mL of 4M NaCl.</em>
Glucose 8% you need to add:
40% / 8% = 5 (dilution 1/5). 400mL / 5 = <em>80 mL of 40% glucose </em>
Buffer 50mM you need to add:
1000mM / 50mM = 20 (dilution 1/20). 400mL / 20 = <em>20mL of 1M Tris-HCl (pH 8.5)</em>
<em></em>
The resting volume: 400mL - 50mL of 4M NaCl - 80mL of 40% glucose - 20mL of 1M Tris-HCl (pH 8.5) = 250 mL must be completed with water.
Thus, to make the solution you need: <em>50mL of 4M NaCl, 80mL of 40% glucose, 20mL of 1M Tris-HCl (pH 8.5) and 250mL of water.</em>
<em></em>
I hope it helps!
Explanation:
carbon dioxide waste from the body, is a result of
cellular metabolism. Through exhalation, a body gets rid of CO2. (the lungs), are most important in removal of co2.
10) cellular transport through the lungs.
11) o2 (inhalation) lungs, oxygenate cells to deliver o2 through the bloodstream to perform proper function. plus the pulmonary arteries renew and release CO2 from the body..