Im pretty sure its c but hope this helps :)
Answer:
Option A, Glucose metabolism in the fetal brain increased
Explanation:
Usage of cocaine during pregnancy is prohibited. However, in case if cocaine is taken it disrupts the metabolism as it increases brain glucose metabolism to the level of an adult human being. Since glucose metabolism in brain is a sensitive process, any disruption in it can lead to unaccounted effects such as dysfunctional circulation, and pharmacological effect. Cocaine increases the dopamine by blocking the dopamine transporters thereby increasing the Vmax. Since the brain of a child has all kind of neurochemical components, cocaine intakes by a pregnant woman produces reinforcing effects in brain of fetus and also make it pharmacologically active
Hence, option A is correct
Answer:
i) Glucose
ii) β(1-4) glycosidic bonds.
iii) Oxygen
Explanation:
Cellulose is an important structural carbohydrate found in plants. It forms a major component of the plant cell wall.
Cellulose is a polysaccharide formed by monomers of glucose. These glucose monomers are joined together by covalent bonds called β(1-4) glycosidic bonds, which means that the 1st carbon of one glucose is bound to the 4th carbon of the next glucose. To make this arrangement, every other glucose molecule in cellulose is inverted, which you can see in the diagram.
Glucose monomers contain carbon, hydrogen, and oxygen only. If you look at the pattern of the molecule (remembering every second glucose is inverted), you can see that Z must be O.
The functional group denoted by Z is oxygen. The OH groups on the glucose from one cellulose chain form hydrogen bonds with oxygen atoms on the same or on another chain, holding the chains firmly together and forming very strong molecules - giving cellulose its strength.
<span>C. Several billion,,,,,,,,,,,,,,,,,,,,,</span>
Answer:
similarity
Starch, cellulose,dextran and glycogen are all polymers of glucose
differences
monomer/glucose glycosidic bond branching
1.starch α glucose 1-4 and 1-6 branch and unbranced
amylose 1-4 unbranched
amylopectin 1-4 and 1-6 branched
2. dextran α glucose 1-6 branched
3. cellulose β glucose 1-4 unbranched, linear
4. glycogen α glucose 1-4 and 1-6 branched (shorter
branches than starch)
Enzyme: amlase acts on starch and cellulase acts on cellulose as they are specific for their substrates.
Explanation:
Starch: Consists of both branched amylopectin and unbranched amylose
Enzymes: Enzymes are specific as the gulcose molecule in starch is α and in cellulose is β which differ in their position of hydroxyl groups at anomeric carbon, their structures differ so they form different bonds. Active sites of enzymes can act only on specific bonds a sthey can fit to their specific substrates.