1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Debora [2.8K]
3 years ago
14

Or is it c. 10.96 or d 13.0 (sorry the rest couldn’t fit in the picture) please help me I don’t get it.

Mathematics
1 answer:
solong [7]3 years ago
6 0
We have a right triangle with legs of 6 and 8. The hypotenuse is unknown so let it be x for now

Plug these three values
a = 6
b = 8
c = x
into the Pythagorean Theorem below. Then solve for x

a^2 + b^2 = c^2
6^2 + 8^2 = x^2
36+64 = x^2
100 = x^2
x^2 = 100
sqrt(x^2) = sqrt(100) ... apply the square root to both sides
x = 10

The final answer is 10 ft. This option isn't listed which makes me think your teacher made a typo somewhere. 

You might be interested in
A 4-pound bag of carrots costs $2.48. What is the unit price? *
ahrayia [7]

Answer:

0.62 cents per pound

Step-by-step explanation:

2.48/4

to find price per pound which is the unit price

2.48/4=0.62

brainliest appreciated

8 0
3 years ago
292 tickets were sold for a basketball game, an adult ticket costs $3. A students ticket costs $1. Tickets sales were $470. How
Sliva [168]

Answer:

Step-by-step explanation:

93

8 0
3 years ago
How do you do this please help ?
Vladimir79 [104]

Answer:

Area: A = 42x - 49

Step-by-step explanation:

Area of rectangle =  L * W

Plug in

A = 7 * (6x - 7)

A = 42x - 49

7 0
4 years ago
Ayudaaaaa porfavor Convertir las unidades de medida 8 000 m = _______ km 4 000 g = _______ kg 3 000 m = ________ km 7 m = ______
jek_recluse [69]

Answer:

a) x = 8\,km, b) x = 4\,kg, c) x = 3\,km, d) x = 700\,cm, e) x = 3\,cm, f) x = 100\,mm, g) x = 7\,mm, h) x = 10000\,mL, i) x = 8\,m, j) x = 6000\,g

Step-by-step explanation:

a) 1 kilómetro equivale a 1000 metros, entonces obtenemos el valor requerido mediante la siguiente regla de tres simple:

x = 8000\,m \times \frac{1\,km}{1000\,m}

x = 8\,km

b) 1 kilogramo equivale a 1000 gramos, entonces obtenemos el valor requerido mediante la siguiente regla de tres simple:

x = 4000\,g \times \frac{1\,kg}{1000\,g}

x = 4\,kg

c) 1 kilómetro equivale a 1000 metros, entonces obtenemos el valor requerido mediante la siguiente regla de tres simple:

x = 3000\,m \times \frac{1\,km}{1000\,m}

x = 3\,km

d) 1 metro equivale a 100 centímetros, entonces obtenemos el valor requerido mediante la siguiente regla de tres simple:

x = 7\,m \times \frac{100\,cm}{1\,m}

x = 700\,cm

e) 1 centímetro equivale a 10 milímetros, entonces obtenemos el valor requerido mediante la siguiente regla de tres simple:

x = 30\,mm \times \frac{1\,cm}{10\,mm}

x = 3\,cm

f) 1 centímetro equivale a 10 milímetros, entonces obtenemos el valor requerido mediante la siguiente regla de tres simple:

x = 10\,cm \times \frac{10\,mm}{1\,cm}

x = 100\,mm

g) 1 centímetro equivale a 10 milímetros, entonces obtenemos el valor requerido mediante la siguiente regla de tres simple:

x = 70\,mm\times \frac{1\,cm}{10\,mm}

x = 7\,mm

h) 1 litro equivale a 1000 mililitros, entonces obtenemos el valor requerido mediante la siguiente regla de tres simple:

x = 10\,L\times \frac{1000\,mL}{1\,L}

x = 10000\,mL

i) 1 metro equivale a 100 centímetros, entonces obtenemos el valor requerido mediante la siguiente regla de tres simple:

x = 800\,cm \times \frac{1\,m}{100\,cm}

x = 8\,m

j) 1 kilogramo equivale a 1000 gramos, entonces obtenemos el valor requerido mediante la siguiente regla de tres simple:

x = 6\,kg\times \frac{1000\,g}{1\,kg}

x = 6000\,g

8 0
3 years ago
In a process that manufactures bearings, 90% of the bearings meet a thickness specification. A shipment contains 500 bearings. A
Marina86 [1]

Answer:

(a) 0.94

(b) 0.20

(c) 90.53%

Step-by-step explanation:

From a population (Bernoulli population), 90% of the bearings meet a thickness specification, let p_1 be the probability that a bearing meets the specification.

So, p_1=0.9

Sample size, n_1=500, is large.

Let X represent the number of acceptable bearing.

Convert this to a normal distribution,

Mean: \mu_1=n_1p_1=500\times0.9=450

Variance: \sigma_1^2=n_1p_1(1-p_1)=500\times0.9\times0.1=45

\Rightarrow \sigma_1 =\sqrt{45}=6.71

(a) A shipment is acceptable if at least 440 of the 500 bearings meet the specification.

So, X\geq 440.

Here, 440 is included, so, by using the continuity correction, take x=439.5 to compute z score for the normal distribution.

z=\frac{x-\mu}{\sigma}=\frac{339.5-450}{6.71}=-1.56.

So, the probability that a given shipment is acceptable is

P(z\geq-1.56)=\int_{-1.56}^{\infty}\frac{1}{\sqrt{2\pi}}e^{\frac{-z^2}{2}}=0.94062

Hence,  the probability that a given shipment is acceptable is 0.94.

(b) We have the probability of acceptability of one shipment 0.94, which is same for each shipment, so here the number of shipments is a Binomial population.

Denote the probability od acceptance of a shipment by p_2.

p_2=0.94

The total number of shipment, i.e sample size, n_2= 300

Here, the sample size is sufficiently large to approximate it as a normal distribution, for which mean, \mu_2, and variance, \sigma_2^2.

Mean: \mu_2=n_2p_2=300\times0.94=282

Variance: \sigma_2^2=n_2p_2(1-p_2)=300\times0.94(1-0.94)=16.92

\Rightarrow \sigma_2=\sqrt(16.92}=4.11.

In this case, X>285, so, by using the continuity correction, take x=285.5 to compute z score for the normal distribution.

z=\frac{x-\mu}{\sigma}=\frac{285.5-282}{4.11}=0.85.

So, the probability that a given shipment is acceptable is

P(z\geq0.85)=\int_{0.85}^{\infty}\frac{1}{\sqrt{2\pi}}e^{\frac{-z^2}{2}=0.1977

Hence,  the probability that a given shipment is acceptable is 0.20.

(c) For the acceptance of 99% shipment of in the total shipment of 300 (sample size).

The area right to the z-score=0.99

and the area left to the z-score is 1-0.99=0.001.

For this value, the value of z-score is -3.09 (from the z-score table)

Let, \alpha be the required probability of acceptance of one shipment.

So,

-3.09=\frac{285.5-300\alpha}{\sqrt{300 \alpha(1-\alpha)}}

On solving

\alpha= 0.977896

Again, the probability of acceptance of one shipment, \alpha, depends on the probability of meeting the thickness specification of one bearing.

For this case,

The area right to the z-score=0.97790

and the area left to the z-score is 1-0.97790=0.0221.

The value of z-score is -2.01 (from the z-score table)

Let p be the probability that one bearing meets the specification. So

-2.01=\frac{439.5-500  p}{\sqrt{500 p(1-p)}}

On solving

p=0.9053

Hence, 90.53% of the bearings meet a thickness specification so that 99% of the shipments are acceptable.

8 0
4 years ago
Other questions:
  • A vertical pole 40 feet tall stands on a hillside that makes an angle of 17o with the horizontal. Determine the approximate leng
    5·1 answer
  • What is addition of property for 28+29+42
    10·1 answer
  • Evaluate : -5x+7y^2-z
    9·1 answer
  • Which is the completely factored form of 12x^3-60x^2+4x-20​
    9·1 answer
  • 1 × 100000 3x 10000 9 ×1000 8×100 5x 10 2 × 1 in standard form and word form
    15·1 answer
  • Geometry!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    7·1 answer
  • Find the measure of angle D.
    10·2 answers
  • Please answer correctly I will mark you Brainliest!
    7·1 answer
  • HELP!!! GEOMETRY 15 POINTS
    11·1 answer
  • Select the correct location on the coordinate plane.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!