Given that (p - 1/p) = 4, the value of p² + 1/p² is 18. Detail below
<h3>Data obtained from the questio</h3>
- (p - 1/p) = 4
- p² + 1/p² = ?
<h3>How to determine the value of p² + 1/p²</h3>
(p - 1/p) = 4
Square both sides
(p - 1/p)² = (4)²
(p - 1/p)² = 16 ....(1)
Recall
(a - b)² = a² + b² - 2ab
Thus,
(p - 1/p)² = p² + 1/p² - (2 × p × 1/p)
(p - 1/p)² = p² + 1/p² - 2
From equation (1) above,
(p - 1/p)² = 16
Therefore,
p² + 1/p² - 2 = 16
Rearrange
p² + 1/p² = 16 + 2
p² + 1/p² = 18
Thus, the value of p² + 1/p² is 18
Learn more about algebra:
brainly.com/question/953809
#SPJ1
Answer:
Lisa earns more money because John makes $16 while Lisa makes $18.
The order of operations is:
Parentheses, Exponent, Division, Multiplication, Addition, Subtraction.
Or PEMDAS.
hope it helps!
S=350 your starting amount + 30w which is 30× the number of weeks (19) which comes out to give you s=920 if I did it correctly