Answer: The value of k for which one root of the quadratic equation kx2 - 14x + 8 = 0 is six times the other is k = 3.
Let's look into the solution step by step.
Explanation:
Given: A quadratic equation, kx2 - 14x + 8 = 0
Let the two zeros of the equation be α and β.
According to the given question, if one of the roots is α the other root will be 6α.
Thus, β = 6α
Hence, the two zeros are α and 6α.
We know that for a given quadratic equation ax2 + bx + c = 0
The sum of the zeros is expressed as,
α + β = - b / a
The product of the zeros is expressed as,
αβ = c / a
For the given quadratic equation kx2 - 14x + 8 = 0,
a = k, b = -14, c = 8
The sum of the zeros is:
α + 6α = 14 / k [Since the two zeros are α and 6α]
⇒ 7α = 14 / k
⇒ α = 2 / k --------------- (1)
The product of the zeros is:
⇒ α × 6α = 8 / k [Since the two zeros are α and 6α]
⇒ 6α 2 = 8 / k
⇒ 6 (2 / k)2 = 8 / k [From (1)]
⇒ 6 × (4 / k) = 8
⇒ k = 24 / 8
⇒ k = 3
Answer:0.25
Step-by-step explanation:
Just type it in a calculator
Answer:
f(9) = 35
Step-by-step explanation:
To solve this, you can take 9 and replace both x's with it and then complete the equation;
f(x) = 4x - 1
f(9) = 4(9) - 1
f(9) = 36 - 1
f(9) = 35
Hope this helps!
-2; 3-5= -2 or -5 - (-3)
-1; 4-5 or -5 - (-4) = -1
-5; -6 - (-1)= 1-6= -5
Hey there!
<h2>Good luck on your assignment and enjoy your day! </h2>
~