Answer:
give it
Step-by-step explanation:
the answer is m=1/4
we can pretty much split the middle part into two trapezoids. Check the picture below.
so we really have one trapezoid and one square, each twice, so simply let's get the area of the trapezoid and sum it up with the area of the square, twice, and that's the area of the shape.
![\textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} h=height\\ a,b=\stackrel{\textit{parallel sides}}{bases}\\[-0.5em] \hrulefill\\ h=5\\ a=3\\ b=7 \end{cases}\implies A=\cfrac{5(3+7)}{2}\implies A=25 \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{sum of areas}}{[25+(3\cdot 3)]}\cdot \stackrel{twice}{2}\implies [34]2\implies \underset{in^2}{68}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%20%5Cbegin%7Bcases%7D%20h%3Dheight%5C%5C%20a%2Cb%3D%5Cstackrel%7B%5Ctextit%7Bparallel%20sides%7D%7D%7Bbases%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20h%3D5%5C%5C%20a%3D3%5C%5C%20b%3D7%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B5%283%2B7%29%7D%7B2%7D%5Cimplies%20A%3D25%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bsum%20of%20areas%7D%7D%7B%5B25%2B%283%5Ccdot%203%29%5D%7D%5Ccdot%20%5Cstackrel%7Btwice%7D%7B2%7D%5Cimplies%20%5B34%5D2%5Cimplies%20%5Cunderset%7Bin%5E2%7D%7B68%7D)
Answer:
P(0, 1)
Step-by-step explanation:
Using the section formula
=
=
= 0
=
=
= 1
Hence P(0, 1)
$22.50. change 25% into decimal. 0.25 and multiply the original price by percent in decimal form you will get the amount that is taken off so subtract that from original:)
Answer:
.
Step-by-step explanation:
Start by finding the slope of the line perpendicular to
.
The slope of
is
.
In a plane, if two lines are perpendicular to one another, the product of their slopes would be
.
Let
denote the slope of the line perpendicular to
. The expression
would denote the product of the slopes of these two lines.
Since these two lines are perpendicular to one another,
. Solve for
:
.
The
is a point on the requested line. (That is,
and
.) The slope of that line is found to be
. The equation of that line in the point-slope form would be:
.
Rewrite this point-slope form equation into the slope-intercept form:
.