Answer:
(identity has been verified)
Step-by-step explanation:
Verify the following identity:
sin(x)^4 - sin(x)^2 = cos(x)^4 - cos(x)^2
sin(x)^2 = 1 - cos(x)^2:
sin(x)^4 - 1 - cos(x)^2 = ^?cos(x)^4 - cos(x)^2
-(1 - cos(x)^2) = cos(x)^2 - 1:
cos(x)^2 - 1 + sin(x)^4 = ^?cos(x)^4 - cos(x)^2
sin(x)^4 = (sin(x)^2)^2 = (1 - cos(x)^2)^2:
-1 + cos(x)^2 + (1 - cos(x)^2)^2 = ^?cos(x)^4 - cos(x)^2
(1 - cos(x)^2)^2 = 1 - 2 cos(x)^2 + cos(x)^4:
-1 + cos(x)^2 + 1 - 2 cos(x)^2 + cos(x)^4 = ^?cos(x)^4 - cos(x)^2
-1 + cos(x)^2 + 1 - 2 cos(x)^2 + cos(x)^4 = cos(x)^4 - cos(x)^2:
cos(x)^4 - cos(x)^2 = ^?cos(x)^4 - cos(x)^2
The left hand side and right hand side are identical:
Answer: (identity has been verified)
First do distributive property
2x + 10 + 3x = 30
Now combine like terms
5x + 10 = 30
Subtract 10 from both sides
5x = 20
Divide both sides by 5
x = 4
Answer: 0.9726
Step-by-step explanation:
Let x be the random variable that represents the distance the tires can run until they wear out.
Given : The top-selling Red and Voss tire is rated 50,000 miles, which means nothing. In fact, the distance the tires can run until they wear out is a normally distributed random variable with a
67,000 miles and a
5,200 miles.
Then , the probability that a tire wears out before 60,000 miles :
[using p-value table for z]
Hence, the probability that a tire wears out before 60,000 miles= 0.9726
Answer:
Step-by-step explanation:
Only one of them has a < b in ax² + by² = c formula, making its graph horizontal
All the rest are vertical, see attached