<em>BD</em> = 56
Step-by-step explanation:
Step 1: In rectangle, the diagonals are congruent and bisect each other.
So, <em>AC</em> = <em>BD</em>
⇒<em>AG</em> + <em>GC</em> = <em>BG</em> + <em>GD</em>
⇒<em>AG</em> + <em>AG</em> = <em>GD</em> + <em>GD</em>
⇒ 2<em>AG</em> = 2<em>GD</em>
⇒<em>AG</em> = <em>GD</em>
⇒ –7<em>j </em>+ 7 = 5<em>j</em> + 43
⇒–7<em>j</em> – 5<em>j</em> = 43 – 7
⇒–12<em>j</em> = 36
⇒<em>j</em> = –3
Step 2: <em>BD</em> = 2<em>DG</em>
<em>BD</em> = 2(5<em>j</em> + 43)
= 2(5 (–3) + 43)
= 2(–15 + 43)
= 2 × 28
= 56
Hence, <em>BD</em> = 56.
The distance between two points on the plane is given by the formula below
![\begin{gathered} A=(x_1,y_1),B=(x_2,y_2) \\ \Rightarrow d(A,B)=\sqrt[]{(x_1-x_2)^2+(y_1-y_2)^2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20A%3D%28x_1%2Cy_1%29%2CB%3D%28x_2%2Cy_2%29%20%5C%5C%20%5CRightarrow%20d%28A%2CB%29%3D%5Csqrt%5B%5D%7B%28x_1-x_2%29%5E2%2B%28y_1-y_2%29%5E2%7D%20%5Cend%7Bgathered%7D)
Therefore, in our case,

Thus,
![\begin{gathered} \Rightarrow d(A,B)=\sqrt[]{(-1-5)^2+(-3-2)^2}=\sqrt[]{6^2+5^2}=\sqrt[]{36+25}=\sqrt[]{61} \\ \Rightarrow d(A,B)=\sqrt[]{61} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5CRightarrow%20d%28A%2CB%29%3D%5Csqrt%5B%5D%7B%28-1-5%29%5E2%2B%28-3-2%29%5E2%7D%3D%5Csqrt%5B%5D%7B6%5E2%2B5%5E2%7D%3D%5Csqrt%5B%5D%7B36%2B25%7D%3D%5Csqrt%5B%5D%7B61%7D%20%5C%5C%20%5CRightarrow%20d%28A%2CB%29%3D%5Csqrt%5B%5D%7B61%7D%20%5Cend%7Bgathered%7D)
Therefore, the answer is sqrt(61)
In general,

Remember that

Therefore,
The correct answer is: [B]: "False" .
____________________________________________
<u>Note</u>: A "square centimeter" is the area covered by a square whose sides are:
"1 centimeter" long.
____________________________________________
<u>Note</u>: A "square meter" is the area covered by a square whose sides are:
"1 meter" long.
____________________________________________
< is the answer. Hope this helps!