Answer:
0.0326 = 3.26% probability that a randomly selected thermometer reads between −2.23 and −1.69.
The sketch is drawn at the end.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 0°C and a standard deviation of 1.00°C.
This means that 
Find the probability that a randomly selected thermometer reads between −2.23 and −1.69
This is the p-value of Z when X = -1.69 subtracted by the p-value of Z when X = -2.23.
X = -1.69



has a p-value of 0.0455
X = -2.23



has a p-value of 0.0129
0.0455 - 0.0129 = 0.0326
0.0326 = 3.26% probability that a randomly selected thermometer reads between −2.23 and −1.69.
Sketch:
45-45+56=56 XX_BoxercarnXXJay is my roblox username if you want to be friends
Answer:
y = 1/2x +5
Step-by-step explanation:
change f(x) to y
y = 2x - 10
then switch x and y
x = 2y - 10
then solve for y
add 10 to both sides and divide both sides by 2
Answer:
I notice that they are equal.
Step-by-step explanation:
The slopes are the same when they are on the same line
30 + 8 = 38 desks
38 x 4 = 152 legs
If you did not add those eight desks then you will have 120 legs.
So, the amount of legs will go up by 32 if you add 8 more desks.