1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kogti [31]
3 years ago
15

A line with a slope of -2 crosses the y-axis at (0, 3). The equation of the line is

Mathematics
1 answer:
Alchen [17]3 years ago
4 0
M = -2 and b = 3
so equation
y = -2x + 3

hope it helps
You might be interested in
MY LAST QUESTION PLEASE HURRY, SORRY FOR RUSHING BY THE WAY
77julia77 [94]

Answer:40

Step-by-step explanation:

dividing 1200 by 600 is 2

so you would do the same for 80

6 0
3 years ago
Is the point (2,4) a solution of y &lt;= -4x + 12?<br> HELP ASAP
Natasha2012 [34]

Answer:

yes

Step-by-step explanation:

y <= -4x + 12

(2,4)      4 <= -4*2 + 12      4<= 4   is true

7 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%20%5C%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos2x%7D-%5Csqrt%5B3%5D%7Bcos3x%7D%20%7D%7
salantis [7]

Answer:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{1}{2}

General Formulas and Concepts:

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:                                                                     \displaystyle \lim_{x \to c} x = c

L'Hopital's Rule

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

We are given the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)}

When we directly plug in <em>x</em> = 0, we see that we would have an indeterminate form:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{0}{0}

This tells us we need to use L'Hoptial's Rule. Let's differentiate the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \displaystyle  \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)}

Plugging in <em>x</em> = 0 again, we would get:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \frac{0}{0}

Since we reached another indeterminate form, let's apply L'Hoptial's Rule again:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)}

Substitute in <em>x</em> = 0 once more:

\displaystyle \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)} = \frac{1}{2}

And we have our final answer.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

6 0
3 years ago
360 kilometers is 24% of how many kilometers
Savatey [412]
Here
360 = 24%
360=24/100
360*100=24
36000/24=1500 so ur answer is 1500

6 0
3 years ago
Read 2 more answers
Sheila eats 3/4 of a bag of baby carrots each week.How many bags of carrots does she eat in 6 weeks? Write in Simplest Form
telo118 [61]

Answer:

9/2

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • 0.56 as a fraction in simplest form.
    9·1 answer
  • Write the name of the period that has the digits 913
    5·1 answer
  • What is 8-4(16)+m-f<br> m=13<br> f=41
    13·1 answer
  • Which value is a solution to the inequality x – 4 &gt; 15.5? A. X = 17.3 B. X = 21.4 C. X = 15.5 D. X = 19.3
    8·1 answer
  • If anyone knows the answer can you please help me PLEASE
    11·1 answer
  • The slope intercept of x-y=3
    14·1 answer
  • How many thousandths in 5.08
    8·1 answer
  • What is the total surface area?
    9·1 answer
  • Find in the missing values to make the equations true.
    14·1 answer
  • Whats 6 divided by 24 (show work)
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!