Answer:
(b) Both vertical and horizontal reflection
Step-by-step explanation:
The figure will be a horizontal reflection of itself about any vertical line through two of the smaller 6-pointed stars.
The figure will be a vertical reflection of itself about any horizontal line through two of the smaller 6-pointed stars.
the pattern has both vertical and horizontal reflection
__
<em>Additional comment</em>
A pattern will have horizontal reflection if there exists a vertical line about which the pattern can be reflected to itself. That is, there exists one (or more) vertical lines of symmetry.
Similarly, the pattern will have vertical reflection if there is a horizontal line about which the pattern can be reflected to itself. Such a line is a horizontal line of symmetry.
Answer:
We can find the individual probabilities:
And replacing we got:
![P(X \geq 5) = 1-[0.00114+0.009282+0.0358+0.0869+0.149]= 0.7178](https://tex.z-dn.net/?f=P%28X%20%5Cgeq%205%29%20%3D%201-%5B0.00114%2B0.009282%2B0.0358%2B0.0869%2B0.149%5D%3D%200.7178)
Step-by-step explanation:
Previous concepts
The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".
Solution to the problem
Let X the random variable of interest, on this case we now that:
The probability mass function for the Binomial distribution is given as:
Where (nCx) means combinatory and it's given by this formula:
And we want to find this probability:

And we can use the complement rule:
We can find the individual probabilities:
And replacing we got:
![P(X \geq 5) = 1-[0.00114+0.009282+0.0358+0.0869+0.149]= 0.7178](https://tex.z-dn.net/?f=P%28X%20%5Cgeq%205%29%20%3D%201-%5B0.00114%2B0.009282%2B0.0358%2B0.0869%2B0.149%5D%3D%200.7178)
Answer:
To find the area of an irregular polygon you must first separate the shape into regular polygons, or plane shapes. You then use the regular polygon area formulas to find the area of each of those polygons. The last step is to add all those areas together to get the total area of the irregular polygon
and i thank that it is b 120 in2
Answer:
The line AB, with A(Ax, Ay), B(Bx, By) and midpoint M(Mx, My) satisfying:
Ax + Bx = 2Mx
Ay + By = 2My
=>
2 + Bx = 2*1
5 + By = 2*2
=> Bx = 0
=> By = -1
=> B(0, -1)
Hope this helps!
:)