Hello,
Use the factoration
a^2 - b^2 = (a - b)(a + b)
Then,
x^2 - 81 = x^2 - 9^2
x^2 - 9^2 = ( x - 9).(x + 9)
Then,
Lim (x^2- 81) /(x+9)
= Lim (x -9)(x+9)/(x+9)
Simplity x + 9
Lim (x -9)
Now replace x = -9
Lim ( -9 -9)
Lim -18 = -18
_______________
The second method without using factorization would be to calculate the limit by the hospital rule.
Lim f(x)/g(x) = lim f(x)'/g(x)'
Where,
f(x)' and g(x)' are the derivates.
Let f(x) = x^2 -81
f(x)' = 2x + 0
f(x)' = 2x
Let g(x) = x +9
g(x)' = 1 + 0
g(x)' = 1
Then the Lim stay:
Lim (x^2 -81)/(x+9) = Lim 2x /1
Now replace x = -9
Lim 2×-9 = Lim -18
= -18
Answer is leader B
Step-by-step explanation:
Since both fractions have the same denominator, to find the greater one all you have to do is see which one has a bigger numerator
42>36
the answer is 42/126 is greater
Answer:
-6
Step-by-step explanation:
Trust me fam
Answer:
Step-by-step explanation:
Step 1 Eliminate fractions by multiplying all terms by the least common denominator of all fractions.
Step 2 Simplify by combining like terms on each side of the inequality.
Step 3 Add or subtract quantities to obtain the unknown on one side and the numbers on the other.