Answer: C
Step-by-step explanation:
First of all I want to point out you drew the diagram a little wrong. The Arc is 41 doesn't mean its 41 degrees it means it has length 41 so remove the degrees symbol.
Now for the answer the other arc have to have angle 40 too because vertical angles. And because the radius is the same, both of the length has formula 40/360*pi*2*radius which is 41 in this case. So x has to be 41 also :) Done!
Answer:
√8 ==> 2 units, 2 units
√7 ==> √5 units, √2 units
√5 ==> 1 unit, 2 units
3 ==> >2 units, √5 units
Step-by-step explanation:
To determine which pair of legs that matches a hypotenuse length to create a right triangle, recall the Pythagorean theorem, which holds that, for a right angle triangle, the square of the hypotenuse (c²) = the sum of the square of each leg length (a² + b²)
Using c² = a² + b², let's find the hypotenuse length for each given pairs of leg.
=>√5 units, √2 units
c² = (√5)² + (√2)²
c² = 5 + 2 = 7
c = √7
The hypothenuse length that matches √5 units, √2 units is √7
=>√3 units, 4 units
c² = (√3)² + (4)²
c² = 3 + 16 = 19
c = √19
This given pair of legs doesn't match any given hypotenuse length
=>2 units, √5 units
c² = (2)² + (√5)²
c² = 4 + 5 = 9
c = √9 = 3
legs 2 units, and √5 units matche hypotenuse length of 3
=>2 units, 2 units
c² = 2² + 2² = 4 + 4
c² = 8
c = √8
Legs 2 units, and 2 units matche hypotenuse length of √8
=> 1 unit, 2 units
c² = 1² + 2² = 1 + 4
c² = 5
c = √5
Leg lengths, 1 unit and 2 units match the hypotenuse length, √5
Rajid it is (e) 3/4 and please follow me I need a follower
Answer:
0
Step-by-step explanation: