Answer:
32x
Step-by-step explanation:
Distribute the -8x to the (-4)
Answer:
a) 48.21 %
b) 45.99 %
c) 20.88 %
d) 42.07 %
e) 50 %
Note: these values represent differences between z values and the mean
Step-by-step explanation:
The test to carry out is:
Null hypothesis H₀ is μ₀ = 30
The alternative hypothesis m ≠ 30
In which we already have the value of z for each case therefore we look directly the probability in z table and carefully take into account that we had been asked for differences from the mean (0.5)
a) z = 2.1 correspond to 0.9821 but mean value is ubicated at 0.5 then we subtract 0.9821 - 0.5 and get 0.4821 or 48.21 %
b) z = -1.75 P(m) = 0.0401 That implies the probability of m being from that point p to the end of the tail, the difference between this point and the mean so 0.5 - 0.0401 = 0.4599 or 45.99 %
c) z = -.55 P(m) = 0.2912 and this value for same reason as before is 0.5 - 0.2912 = 0.2088 or 20.88 %
d) z = 1.41 P(m) = 0.9207 0.9207 -0.5 0.4207 or 42.07 %
e) z = -5.3 P(m) = 0 meaning there is not such value in z table is too small to compute and difference to mean value will be 0.5
d) z= 1.41 P(m) =
Answer:
4•8 feet
Step-by-step explanation:
Distance= first floor × second ÷ escalator
Distance= 12feet × 12feet ÷ 30 feet
= 12×12÷30
= 4•8 feet
The probability that a student selected at random majors in engineering is 30% which is 0.3.
The probability that the student both majors in engineering and play club sports is 10% which is 0.1.
For a student who is selected at random to be one who majors in engineering, there are two possible ways.
The student majors in engineering OR the Student both majors in engineering and plays club
The Probabilty that the student majors in Enginnering =
The probability that the student majors in engineering plus the probability that Student both majors in engineering and plays club sport
= 0.3+0.1= 0.4
Is the equation like this