This can be solved a couple of ways. One way is to use the Pythagorean theorem to write equations for the magnitude from the components of the forces. That is what was done in the graph here.
Another way is to use the Law of Cosines, which lets you make direct use of the angle between the vectors.
.. 13 = a^2 +b^2 -2ab*cos(90°)
.. 19 = a^2 +b^2 -2ab*cos(120°)
Subtracting the first equation from the second, we have
.. 6 = -2ab*cos(120°)
.. ab = 6
Substituting this into the first equation, we have
.. 13 = a^2 +(6/a)^2
.. a^4 -13a^2 +36 = 0
.. (a^2 -9)(a^2 -4) = 0
.. a = ±3 or ±2
The magnitudes of the two forces are 2N and 3N, in no particular order.
Well 33 is rounded down to 30
And 89 is rounded up to 90
So it would be 120
Anything from 1-4 is rounded down and anything 5-9 is rounded up
3•2-3•4
6-12=-30
-6=-30
false
Problem A
Usually the number of bits in a byte is 8 or 16 or 32 and recently 64. You don't have to write a formula to restrict it to this number of bits. You are not asked to do so. The general formula is 2^n - 1 for the problem of Millie and her golden keys. Somehow the system can be made to choose the right number of bits. Apple IIe s for example, used 8 bits and there was a location that told the processor that fact.
2^n - 1 <<<<< Answer
Problem B
In this case n = 4
2^n - 1 = 2^4 - 1 = 16 - 1 = 15
Millie can collect 15 keys <<<<<< Answer
Answer:
400 x however long those ribbons are
Step-by-step explanation:
1 meter is 100 centimeters, and there are four rolls. so 4x100 equals 400, and you multiply that by the length that you didn't provide.