Answer:
(f - g)(x) = 4x² + 4x + 5
General Formulas and Concepts:
<u>Pre-Algebra</u>
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = 5x² - 3
g(x) = x² - 4x - 8
(f - g)(x) is f(x) - g(x)
<u>Step 2: Find (f - g)(x)</u>
- Substitute: (f - g)(x) = 5x² - 3 - (x² - 4x - 8)
- Distribute -1: (f - g)(x) = 5x² - 3 - x² + 4x + 8
- Combine like terms: (f - g)(x) = 4x² + 4x + 5
The answer is x < 1 or x > 7
Answer:
£58,800
Step-by-step explanation:
The answer can be calculated using
FV=p(1+r/n)^nt
P=£50,000
r=2%=0.02
n=12
t=2009 to 2017=8 years
FV=p(1+r/n)^nt
=50,000(1+0.02/12)^12*8
=50,000(1+0.0017)^96
=50,000(1.0017)^96
=50,000(1.1771)
=58,855
FV=58,855
To the nearest £100=£58,800
Answer:
<h2>a³-b³ = (a-b)(a²+ab+b²)</h2>
Step-by-step explanation:
let the two perfect cubes be a³ and b³. Factring the difference of these two perfect cubes we have;
a³ - b³
First we need to factorize (a-b)³
(a-b)³ = (a-b) (a-b)²
(a-b)³ = (a-b)(a²-2ab+b²)
(a-b)³ = a³-2a²b+ab²-a²b+2ab²-b³
(a-b)³ = a³-b³-2a²b-a²b+ab²+2ab²
(a-b)³ = a³-b³ - 3a²b+3ab²
(a-b)³ = (a³-b³) -3ab(a-b)
Then we will make a³-b³ the subject of the formula from the resultinh equation;
a³-b³ = (a-b)³+ 3ab(a-b)
a³-b³ = a-b{(a-b)²+3ab}
a³-b³ = a-b{a²+b²-2ab+3ab}
a³-b³ = (a-b)(a²+b²+ab)
a³-b³ = (a-b)(a²+ab+b²)
The long division problem that can be used is (a-b)(a²+ab+b²)