Hellooooo!! Marie Here!!!
The answer is here:
The value of "x" is 9
<h3>Hope This Helps!!! Have A GREAAATTTT Day!!</h3>
The combination shows that the numbers of possible live card hands drawn without replacement from a standard deck of 52 playing cards is 2,598,960.
<h3>How to explain the information?</h3>
A permutation is the act of arranging the objects or numbers in order while combinations are the way of selecting the objects from a group of objects or collection such that the order of the objects does not matter.
Since the order does not matter, it means that each hand is a combination of five cards from a total of 52.
We use the formula for combinations and see that there are a total number of C( 52, 5 ) = 2,598,960 possible hands.
Learn more about permutations and combination on:
brainly.com/question/4658834
#SPJ1
The events A and B are independent if the probability that event A occurs does not affect the probability that event B occurs.
A and B are independent if the equation P(A∩B) = P(A) P(B) holds true.
P(A∩B) is the probability that both event A and B occur.
Conditional probability is the probability of an event given that some other event first occurs.
P(B|A)=P(A∩B)/P(A)
In the case where events<span> A and B are </span>independent<span> the </span>conditional probability<span> of </span>event<span> B given </span>event<span> A is simply the </span>probability<span> of </span>event<span> B, that is P(B).</span>
Statement 1:A and B are independent events because P(A∣B) = P(A) = 0.12. This is true.
Statement 2:<span>A and B are independent events because P(A∣B) = P(A) = 0.25.
This is true.
Statement 3:</span><span>A and B are not independent events because P(A∣B) = 0.12 and P(A) = 0.25.
This is true.
Statement 4:</span><span>A and B are not independent events because P(A∣B) = 0.375 and P(A) = 0.25
This is true.</span>
0.90 Is the answer hello hi ahsiodend
<h2>
Answer:</h2>
The values of x for which the given vectors are basis for R³ is:

<h2>
Step-by-step explanation:</h2>
We know that for a set of vectors are linearly independent if the matrix formed by these set of vectors is non-singular i.e. the determinant of the matrix formed by these vectors is non-zero.
We are given three vectors as:
(-1,0,-1), (2,1,2), (1,1, x)
The matrix formed by these vectors is:
![\left[\begin{array}{ccc}-1&2&1\\0&1&1\\-1&2&x\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%262%261%5C%5C0%261%261%5C%5C-1%262%26x%5Cend%7Barray%7D%5Cright%5D)
Now, the determinant of this matrix is:

Hence,
