➻ In a group of 40 people, 27 can speak English and 25 can speak Spanish.
➻ The required number of people who can speak both English and Spanish .
<u>Consider</u> ,
➻ A → Set of people who speak English.
➻ B → Set of people who speak Spanish
➻ A∩B → Set of people who can speak both English and Spanish
➻ n(A∪B) = n(A) + n (B) - n(A∩B)
➻ 40 = 27 + 25 - n (A∩B)
➻ 40 = 52 - n (A∩B)
➻ n (A∩B) = 52 - 40
➻ ∴ n (A∩B) = 12
∴ Required Number of persons who can speak both English and Spanish are <u>12 .</u>
━━━━━━━━━━━━━━━━━━━━━━

➻ n(A∪B) = n(A) + n (B) - n(A∩B)
➻ 40 = 27 + 25 - 12
➻ 40 = 52 - 12
➻ 40 = 40
➻ ∴ L.H.S = R.H.S
━━━━━━━━━━━━━━━━━━━━━━
Answer:
8
Step-by-step explanation:
that;'s what i put the first time
4 and -2.5
You can get this by first factoring the equation.
(2x + 5)(x - 4)
Then set both equal to zero and solve individually.
Your question is incomplete, here is the complete form.
Points J, K and L are collinear with J between L and K. If KJ = 2x - 3, LK = 9x + 7 and LJ = 4x - 8, solve for x:
Answer:
The value of x is -6 ⇒ B
Step-by-step explanation:
∵ J, K, and L are collinear
→ That means they form a straight segment
∵ J is between K and L
→ That means J divides LK into two segments KJ and LJ
∴ LK = KJ + LJ
∵ LK = 9x + 7
∵ KJ = 2x - 3
∵ LJ = 4x - 8
→ Substitute them in the equation above
∴ 9x + 7 = (2x - 3) + (4x - 8)
→ Add the like terms in the right side
∵ 9x + 7 = (2x + 4x) + (-3 - 8)
∴ 9x + 7 = 6x + -11
∴ 9x + 7 = 6x - 11
→ Subtract 7 from both sides
∵ 9x + 7 - 7 = 6x - 11 - 7
∴ 9x = 6x - 18
→ Subtract 6x from both sides
∵ 9x - 6x = 6x - 6x - 18
∴ 3x = -18
→ Divide both sides by 3
∵ 
∴ x = -6
∴ The value of x is -6